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1 Overview

Algorithms Illuminated is the text version of a sequence of four Coursera algorithms courses taught
by the author in the last ten years to a large-scale and diverse audience. This book covers topics in
data structures (hash tables, Bloom filters, binary heaps, binary search trees, union-find, graphs),
analysis techniques (asymptotic notations, the master method, expected values), design paradigms
(divide-conquer, greedy, dynamic programming), and coping with hardness (NP-completeness, ap-
proximate algorithms, local search, integer programming and satisfiability solvers). Two appendices
on proof techniques and probability, a short field guide to algorithm design, and an in-depth case
study of the 2016-17 Federal Communications Commission’s reverse auction of wireless spectrum
are also included. The materials have been used to teach an undergraduate-level as well as a mas-
ter’s level course in algorithms at Stanford and other universities. Extensive learning resources
(YouTube videos, slides, math supplements, test data sets, and discussion forums) are available at
the eponymous web site.

Keeping with its single goal “to teach the basics of algorithms in the most accessible way possi-
ble,” the book maintains a conversational style and interacts effectively with the reader through the
use of quizzes and footnotes sprinkled throughout the text where elaboration may be required or
desired. The quizzes, whose answers with explanation appear a few pages later, force the reader to
master a point needed in the subsequent discussion, while the footnotes provide optional additional
insights and historical notes. Algorithms are described in very high-level pseudocode that omit
implementational details to focus on the big computational picture. The standard treatment of
covered topics at many places has been updated with modern problems, tweaked solutions, admo-
nitions against common pitfalls, and references to latest developments. Each chapter ends with a
summary, followed by a small number of problems classified into three types: routine, challenge,
and programming. Solutions or hints are provided for all non-programming problems.
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2 Summary of Contents

Part I: The Basics

Chapter 1 motivates the study of design and analysis of algorithms with a gentle development
of Karatsuba multiplication and merge sort. The conventions of the field are presented: how to
describe a problem, how to express algorithms in pseudocode, how to count the number of primitive
operations, what theorems, lemmas, Q.E.D., and “fast” mean, and why focusing on analyzing the
worst-case and long-term behavior of algorithms yields the right balance between mathematical
tractability and accurate prediction of running times.

Chapter 2 explains asymptotic notations in English and pictorially with familiar examples
and then formally defines them mathematically with additional examples. Common pitfalls are
mentioned, such as using O to mean Θ and not realizing that 2n and 4n have different growth
rates.

Chapter 3 illustrates the divide-and-conquer design paradigm with three classic problems:
counting inversions in an array, matrix multiplication, and finding the closest pair of points in
the plane. Exhaustive solutions to these problems are presented first, followed by improvements
based on the divide-conquer-combine paradigm. Asymptotic analysis of these recursive algorithms
is given informally, to be made precise using the master theorem in the next chapter. The closest-
pair algorithm given in this chapter is a nice variation of the standard treatment that presorts
the array of points twice (by x-coordinates and independently by y-coordinates) to achieve a clean
conquer step.

Chapter 4 states the master theorem and applies it to recursive algorithms discussed in the
previous chapters among others. A carefully explained proof of the theorem is also provided.

Chapter 5 is an in-depth study of quicksort implemented using Lomuto’s version of the parti-
tion algorithm. Randomized algorithms are introduced, and analysis of the expected running time
of randomized quicksort using indicator random variables is given. The chapter ends with a proof
of the lower bound of Ω(n log n) for comparison-based sorting algorithms and a discussion of faster
sorting algorithms such as bucket sort, counting sort, and radix sort that are not comparison-based.

Chapter 6 describes the straightforward application of the partition algorithm to solve the
selection problem (commonly known as quickselect) and shows that the expected running time of
randomized quickselect is O(n). The chapter ends with a detailed description and analysis of the
O(n) median-of-medians algorithm for selection.

Part II: Graph Algorithms and Data Structures

Chapter 7 defines graphs and graph terminology, provides examples of graph applications, and
compares the adjacency matrix and adjacency list representations of graphs.

Chapter 8 proves the correctness of the generic graph search algorithm and then implements
and analyzes breadth-first search and depth-first search as special cases. Finding least-edge paths
and connected components are discussed as applications of breadth-first search; similarly, finding
topological ordering and strongly connected components with Kosaraju’s algorithm are discussed
as applications of depth-first search. The chapter ends with a discussion of structural properties of
strongly connected components of the Web graph, whose vertices are web pages and whose edges
are hyperlinks.

Chapter 9 defines the single-source shortest path problem and gives some examples of its
applications. Dijkstra’s algorithm is then presented in data structure-agnostic pseudocode, shown
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to run in polynomial time, and proven correct. The need for a correctness proof is motivated by
two observations that i) Dijkstra’s algorithm fails on some graphs with negative weights; and ii)
adding a constant positive offset to all edge weights changes the shortest paths.

Chapter 10 introduces the heap data structure, its supported operations and their running
times, and its applications. A heap-based version of Dijkstra’s algorithm is then presented and
analyzed. The chapter ends with an array-based implementation of heaps.

Chapter 11 defines the search tree data structure, its supported operations and their running
times for the balanced variant. Implementation of basic binary search trees is discussed, with a
hint on how to correct imbalance using rotations.

Chapter 12 defines the hash table data structure, its supported operations and their typi-
cal running times, and its applications. Implementations of hash tables using chaining and open
addressing with linear probing and double hashing are explained, and their performances are ana-
lyzed in terms of the load factor. There is a nice discussion of pathological data sets causing poor
performance that exist for any hash function, and a brief mention of universal hashing functions
as basic good choices for everyday hashing. The chapter also defines Bloom filters, their supported
operations and applications. It ends with discussions of their implementation as well as heuristic
analysis of their performance.

Part III: Greedy Algorithms and Dynamic Programming

Chapter 13 introduces the greedy algorithm design paradigm and illustrates it with a schedul-
ing problem that seeks to minimize the sum of weighted completion times. Two appealing greedy
strategies that yield conflicting outcomes are compared to motivate the need for a correctness proof,
which is based on an exchange argument.

Chapter 14 motivates the problem of finding optimal prefix-free code and rephrases it as
finding a Σ-tree with the minimum average leaf depth. Huffman’s algorithm is then presented in
pseudocode and analyzed, followed by a discussion of speeding it up using either a heap or two
queues. The chapter ends with a careful induction proof of correctness for Huffman’s algorithm.

Chapter 15 defines the minimum spanning tree problem and presents and analyzes Prim’s
algorithm, first in high-level pseudocode, and then enhanced with the use of heaps. A proof of
correctness based on the minimum bottleneck property is provided; the more traditional proof based
on the cut property is covered in the exercises. Next, it presents and analyzes Kruskal’s algorithm,
first in high-level pseudocode, and then enhanced with the use of the union-find data structure.
A tree-based implementation of union-find that uses union by rank but not path compression is
sketched. A proof of correctness of Kruskal’s algorithm based on the minimum bottleneck property
is provided. The chapter ends with a discussion of the clustering problem and how to solve it using
Kruskal’s algorithm.

Chapter 16 gives a fresh introduction to the dynamic programming design paradigm and
illustrates it with two problems: weighted independent set and knapsack. After showing that the
problems are not susceptible to greedy strategies, it enumerates a three-step recipe for designing
dynamic programming algorithms and points out the differences between this and the divide-and-
conquer recipe. It also includes an amusing anecdote on the origin of the somewhat confusing
paradigm name.

Chapter 17 reinforces the three-step recipe for designing dynamic programming algorithms
with two classic problems: sequence alignment and construction of binary search trees with mini-
mum average search time. The characteristic activities of finding a recurrence for the dependence
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on optimal solutions to subproblems, caching, and reconstructing an actual solution that achieves
the optimal objective function value are illustrated in detail.

Chapter 18 presents Bellman-Ford and Floyd-Warshall algorithms, which are dynamic pro-
gramming solutions to single-source and all-pairs shortest path problems respectively. Again, the
dependence on optimal solutions to subproblems is elaborated with examples. Notable discussions
in this chapter include two ways to define shortest paths in the presence of negative-weight cycles
and application of Bellman-Ford algorithm to internet routing.

Part IV: Algorithms for NP-hard Problems

Chapter 19 brings forth the existence of NP-hard problems such as traveling salesman with
the following informally defined property: they have no known fast solutions, and if indeed no such
solutions exist, then verifying a solution to a problem is fundamentally easier than finding one
from scratch. Three strategies are suggested for coping with NP-hard problems: compromising on
generality, correctness, or speed of their solutions. Several useful asides briefly address randomized
and quantum solutions to NP-hard problems, the exponential time hypothesis, and common rookie
mistakes.

Chapter 20 illustrates examples of approximately correct solutions to three NP-hard problems:
schedule makespan minimization, maximum coverage, and influence maximization. These are fast
greedy algorithms that produce solutions guaranteed to be within a constant factor of the optimal
solutions. For traveling salesman, even existence of such approximately correct solutions would
imply P = NP; high-quality heuristics based on local search are discussed instead.

Chapter 21 presents dynamic-programming solutions that perform better than the brute-force
solutions to two NP-hard problems: traveling salesman and minimum-cost k-path. More generally
it is shown how to use state-of-the-art solvers for mixed integer programming and satisfiability to
obtain optimal solutions for medium-size instances of a variety of NP-hard problems.

Chapter 22 presents examples of NP-hard proofs. Starting with the assumption that 3-SAT
is NP-hard, it is shown that independent set, hamiltonian path, traveling salesman, subset sum are
NP-hard as well through a series of reductions.

Chapter 23 gives formal definitions of NP, NP-hard, and NP-complete problems. It also
discusses the (strong) exponential time hypothesis and the unexpected relationship between it and
sequence alignment.

Chapter 24 is an in-depth case study of the reallocation of spectrum previously licensed to tele-
vision broadcasters to wireless broadband providers. Between 2016 and 2017 the FCC implemented
a reverse auction to determine which television stations would release their spectrum licenses and
at what price, an NP-hard problem even in its simplified form. Drawing together concepts and
results discussed previously, this chapter walks through the details of a greedy heuristic solution
which itself depends on multiple state-of-the-art satisfiability solvers working together plus various
optimizing techniques. It ends with a discussion of the auction’s technical and economic outcomes.

3 My opinion

This book sets high and specific goals for itself in the preface and to a high degree delivers on its
promises. To make the materials accessible, it keeps a laser focus on algorithmic ideas in the text
and renders analysis and implementation in broad strokes. The discussions and the footnotes in the
book do feel like chats you would have with an expert colleague on their favorite topics. The book
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does a great job in presenting greatest hits of algorithms, from the time-tested such as linear-time
selection, randomized algorithms and their analysis, fast solutions for minimum spanning trees and
shortest paths, to new ones such as influence maximization and fine-grained complexity. Finally,
the chapter on the FCC spectrum reverse auction is a unique and convincing demonstration of
bringing the algorithmic tools discussed in this book to bear on a real-world difficult problem.

I particularly enjoy the book’s positive attitude about coping with NP-hardness and discussion
on the different strategies including using integer programming and satisfiability solvers. Overall,
I think this book is a modern, accessible but not lightweight textbook on algorithms that will be
greatly enjoyed by a wide range of undergraduate and beginning graduate students and practitioners
who want to learn how to design algorithmic solutions to problems in their areas.
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