
Review of 1

Connecting Discrete Mathematics and Computer Science
by David Liben-Nowell

Cambridge University Press, 2022
Hardcover/eBook, 674 pages, 2nd ed., $74.99

Reviewed by David Luginbuhl
(dluginbu@samford.edu)

Dept. of Mathematics and Computer Science, Samford University

1 Overview

For those of us who teach discrete math in a computer science program, one of the challenges is
making the topics relevant to computer science. I often find students struggle with this: “Why am
I taking another math class, and why this one in particular?” David Liben-Nowell, in Connecting
Discrete Mathematics and Computer Science, agrees: “Computer science students taking a class
like this one sometimes don’t see why this material has anything to do with computer science —
particularly if you enjoy CS because you enjoy programming” (p. 2).

As the title of his text suggests, Liben-Nowell intends to tackle relevancy head-on. It covers
most topics one would expect in a course in discrete math – logic, proofs, counting, and graphs
and trees, to name a few – but it also weaves in content, examples, and additional features that
can assist an instructor in establishing a “connection” to computer science.

2 Summary of Contents

Each chapter has several common features that are designed to help students see relevancy to
computer science or reinforce the current topic:

� A Why You Might Care section introduces each chapter and provides hooks to computing
topics that will help motivate computer science students.

� There are smaller print notes sometimes labeled Problem-solving tip or Taking it further
embedded throughout the text that provide clarification or additional useful information.
Some of these also allow interested students to dig deeper into the concept being covered.

� The Computer Science Connections at the end of each section provide immediate relevance
and help keep the topic grounded in computer science applications. I could see assigning
these as mini-research projects, where students explore the topic in further detail and either
write a short paper or provide a brief presentation to the rest of the class (depending on class
size, of course). I will highlight some of these in the Chapter Highlights below.

1©2023 David Luginbuhl

9

� The summaries in the last section of each chapter (Chapter at a Glance), organized by sub-
section, provide a valuable study tool and a way to query students in class to see if they
understand what they’ve been reading.

Below I provide a summary and some thoughts on each of the twelve chapters (an intro and
closing chapter, and ten devoted to various discrete math topics).

3 Chapter Highlights

Chapter 1 On the Point of this Book – I am impressed by the readability of this first chapter.
In three pages, Liben-Nowell does a good job of describing the purpose of the book, previewing
the features discussed above, showing the interconnection of the chapters, and ending with “three
very reasonable ways to think about this book” (“mathematical foundations,” “practice,” and
“application”). It is not long – only three pages. I would probably assign it with a brief reflection
essay as homework, asking students what they anticipate most about this course having read this
chapter.

Chapter 2 Basic Data Types – A popular starting point for discrete math is logic, which make
sense – a solid logical foundation is necessary for thinking through all the other topics in this
broad area. The challenge with logic is that it usually involves new terminology, new notation, and
formality that students may be uncomfortable with.

Liben-Nowell takes a different approach: he starts with data types. The advantage is that this
is familiar territory for students in a standard computer science curriculum, so it might be seen as
a more gentle introduction to the world of discrete math for computer science students.

The chapter starts with scalar types (Boolean, integers, reals, and associated operations). It
then moves to sets, then ordered collections (such as sequences and matrices), then to functions.

For this chapter, Computer Science Connections include representation of integers and reals in
the machine, algorithms for computing square root, and MapReduce (for processing collections).

Chapter 3 Logic – This chapter includes sections on propositional logic, predicate logic, and
nested quantifiers. There is also a section on “extensions” to propositional logic, where we are
introduced to concepts like tautologies and satisfiability, as well as circuits and normal forms.

The Computer Science Connections in this chapter include fuzzy logic in natural language
computing and short-circuit evaluation of logical connectives in programming languages.

Chapter 4 Proofs – The Why You Might Care section of this chapter provides a solid connection
to computer science, explaining, for example, that proofs are useful for:

� demonstrating one algorithm is more efficient than another

� finding bugs in programs through program proving

� understanding the concept of computability (e.g., the halting problem)

The chapter begins with “an extended exploration of error-correcting codes” as an example for
showing how to apply various types of proof techniques. This provides an appropriate application
area (certainly relevant to computer science) to introduce the techniques that will be elaborated

10

on in the remainder of the chapter. For instructors who would rather not cover the additional
material on error-correcting codes, this section is fairly self-contained, and there are not many
back-references to it in the rest of the chapter.

There are numerous examples in the following sections demonstrating the various proof tech-
niques, many drawn from propositional logic. The final section on errors is very helpful and provides
exercises where students have to determine whether or not a proof is valid.

Computer Science Connections for proofs include the Four-Color Theorem and some of the
controversy surrounding using a computer to prove a mathematical result and “Some Famous Bugs
in CS” including the Pentium bug and the Therac-25 tragedy.

Chapter 5 Mathematical Induction – Liben-Nowell begins this chapter on induction by drawing
a connection to (not surprisingly) recursion. Technical sections include an introduction to both weak
and strong induction.

I like his informal introduction to proof by induction: “to prove a statement P (n) is true for
all nonnegative integers n, we can prove that P ‘starts being true’ (the base case) and that P
‘never stops being true’ (the inductive case)” (p. 217). He uses the analogy of dominoes falling as
another informal way to explain induction. This would be a terrific way to introduce the concept
of induction, using a physical demonstration.

The final section is on Recursively Defined Structures and Structural Induction. Examples here
include linked lists and binary trees, so the connection to computer science is direct and should be
easily picked up by students.

Computer Science Connections for this chapter include using loop invariants for program prov-
ing and structural induction on parse trees.

Chapter 6 Analysis of Algorithms – This chapter is a comprehensive introduction to algorith-
mics, including a detailed discussion of big Oh, big Omega, and big Theta, analysis of searching
and sorting algorithms, and recurrence relations for analyzing recursive algorithms.

Computer Science Connections for this chapter on algorithms include discussions of Moore’s
Law (to illustrate exponential growth) and why we count operations in algorithm analysis rather
than wall clock time.

Chapter 7 Number Theory – With the rise in importance of cybersecurity, it is only natural to
see more emphasis on number theory. Liben-Nowell addresses this at the beginning of the chapter:
“more so than any other chapter of the book, the technical material in this chapter leads directly to
a single absolutely crucial (and ubiquitous) modern application of computer science: cryptography
...” (p. 328).

The chapter provides a relatively deep dive into the theory behind the RSA encryption algo-
rithm, but I think it is also possible to avoid some of the longer in-depth proofs in this chapter and
still cover the critical concepts.

It starts with modular arithmetic, then moves to prime numbers (and what it means to be
relatively prime). Following this is a discussion of multiplicative inverses in modular arithmetic. The
chapter culminates in a section on cryptography, and in particular, the RSA encryption algorithm.
The treatment of RSA is quite comprehensive and includes proofs of correctness.

Computer Science Connections include another example of error-correcting codes (this time
with Reed-Solomon) and an exposition on the Diffie-Hellman key exchange protocol.

11

For this chapter, more than some of the others, it might be good to start at the end, with the
Chapter at a Glance section. It provides a helpful TL;DR explanation that ties everything together.
From there, the instructor (and students) could back up to the beginning of the chapter and work
forward.

Chapter 8 Relations – This chapter is a straightforward introduction to relations, covering inverse
relations, composition, properties such as reflexivity and transitivity, and equivalence relations and
partial and total orders. There is a subsection on asymptotics, which will be relevant if an instructor
chooses to cover the immediately preceding algorithms chapter.

Computer Science Connections for this chapter cover deterministic finite automata (where each
state represents an equivalence class) and the Painter’s Algorithm used for hidden-surface removal
in computer graphics (as an example of building a partial order).

Chapter 9 Counting – The chapter on counting covers the usual ground: counting rules (Sum,
Product, Inclusion-Exclusion, and Generalized Product), rules for transforming from a set that is
easier to count (Mapping and Division), and combinations and permutations.

Computer Science Connections in this chapter include switching from IP addresses to IPv6
addresses (how many more addresses are made possible by moving from a 32-bit sequence to a
128-bit sequence?) and the Enigma machine (alphabetic permutations).

Chapter 10 Probability – This is a detailed treatment of probability and randomness. The Why
You Might Care section describes some relatable connections to computer science: randomized
algorithms for solving certain kinds of problems, hashing, and creating realism in graphics with
randomness. In fact, Liben-Nowell uses hashing as a “Running Example” (he provides a brief
introduction to hashing in the first section, and comes back to it throughout the rest of chapter).

The next section introduces basic concepts and definitions (outcomes, probability, events) and
provides some standard examples (cards, coin flips, words on a page). The use of tree diagrams to
explain probability is helpful here, with examples that involve hashing and the Monty Hall problem.

Subsequent sections cover independence, conditional probability, random variables, and expec-
tation. These sections are detailed and quite thorough. If students in your program are not going
to be otherwise exposed to probability, this chapter would provide a good introduction to the topic.

One Computer Science Connection in this chapter that I think is particularly motivating for
computer science students involves using randomness to fuzz data for privacy protection.

Chapter 11 Graphs and Trees – The last technical chapter of the text introduces graph theory,
covering directed and undirected graphs, connectivity, isomorphisms, trees traversals, and Dijsktra’s
and Kruskal’s algorithms. There are plenty of relevant examples throughout the chapter.

I thought the discussion of tree traversals was especially good, and the examples that demon-
strate the difference between pre-, post-, and inorder traversals should be very easy for students to
follow.

The Computer Science Connections in this section are particularly apropos, including graph
drawing in computer graphics, the way some programming languages use reachability of nodes for
garbage collection algorithms, and the use of random walks in page rank algorithms.

Chapter 12 Looking Forward – This final chapter touches on the impact of computer science to
society and the importance of understanding how our choices as computing professionals can affect

12

those around us. One way to effectively make use of this small (2.5 pages) concluding chapter is for
an instructor to look for links to societal impact throughout the book (some are provided in this
chapter) and emphasize them throughout the course so they can be reinforced here at the end.

4 Summary

Liben-Nowell delivers on his promise to “Connect Discrete Math with Computer Science.” There
are plenty of computing-related examples peppered throughout each chapter, and the Computer
Science Connections at the end of each section make this even more explicit. Starting out with
data types helps establish computer science relevancy as well.

Beyond that, the summaries and key terms provided at the end of each chapter will be useful
for students in assuring they know what they need to understand.

Each section ends with many exercises at various levels of difficulty.
As with most discrete math texts, it will be necessary to pick and choose, both in terms of

subjects (“Do I want to cover Analysis of Algorithms in this course?”) and depth (“Do students
need to see a detailed proof of this particular theorem?”). One note about depth: as I have indicated
above, the book’s treatment of some subjects (number theory, for example) is quite extensive and
detailed. Students who have already taken at least a couple of math courses will have an easier
time engaging the content in those sections. Still, there is plenty to select from in a book this large
and comprehensive. It should definitely be in the mix of candidates if you are looking for a new
text in this area.

13

