The Book Review Column []
by Nicholas Tran (ntran@scu.edu)
Department of Mathematics & Computer Science, Santa Clara University

1 Notable New Releases

Programming-based Formal Languages and Automata Theory: Design, Implement, Validate, and
Prove (Springer, 2024) by Marco T. Morazan (Seton Hall University) introduces formal languages
and automata theory through programming using a Lisp-like language called FSM.

The Mathematics of Origami (Cambridge University Press, 2025) by Joseph O’Rourke (Smith
College) is an intuitive and hands-on introduction to the mathematics of origami for a general
audience, assuming only a high school geometry and trigonometry background.

Fundamentals of Probability and Statistics for Machine Learning (The MIT Press, 2025) by
Ethem Alpaydin (Ozyegin University) is an introductory textbook for undergraduate or beginning
graduate students that integrates probability and statistics with their applications in machine
learning.

Sum Stories: Equations and Their Origins (Oxford University Press, 2025) by Robin Wilson
(the Open University) is a collection of eighteen stories featuring famous mathematical equations
and their historical development

Discrete and Computational Geometry, 2nd ed. (Princeton University Press, 2025) by Satyan
Devadoss (University of San Diego) and Joseph O’Rourke (Smith College) is an updated and
expanded edition of their 2011 book on the subject, previously reviewed in this column.

2 This Column

Mario Leston Rey takes an in-depth look at Automata Theory: An Algorithmic Approach (The MIT
Press, 2023) by Javier Esparza and Michael Blondin, which presents the theory and applications
of finite automata on both finite and infinite words taking the novel perspective of these machines
as data structures. He particularly appreciates the book’s clarity through well-chosen examples,
its inclusion of unpublished material and reformulations of known results, and its large collection
of exercises and detailed solutions.

David Luginbuhl reviews Computability and Complezity (The MIT Press, 2023) by Hubie Chen,
which provides a balanced treatment of computability and complexity theory with a focus on rig-
orous proofs. He finds the book suitable for upper undergraduate or graduate courses in the theory
of computation, praising its extensive Fxercises and notes sections that include novel problems and
explore some topics in more detail.

1©2025 Nicholas Tran

In the mood for a mystery story? Wondering about deep connections between integers and
permutations? Read Bill Gasarch’s review of the graphic novel Prime Suspects: The Anatomy
of Integers and Permutations (Princeton University Press, 2019) by master number theorist and
expositor Andrew Granville and Jennifer Granville, illustrated by Robert J. Lewis, to get your fix.

3 How to Contribute

Doing anything fun for Labor Day this year? Consider writing a book review for SIGACT News.
Either choose from the books listed below, or propose your own. In either case, the publisher
will send you a free copy of the book. Guidelines and a LaTeX template can be found at https:
//algoplexity.com/~ntran.

BOOKS THAT NEED REVIEWERS FOR THE SIGACT NEWS COLUMN
Algorithms, Complexity, & Computability

1. Vaze, R. (2023). Online Algorithms. Cambridge University Press.
2. Ferragina. P. (2023). Pearls of Algorithm Engineering. Cambridge University Press.

3. Bosc, P., Guyomard, M., & Miclet, L. (2023). Algorithm Design: A Methodological Approach
- 150 Problems and Detailed Solutions. Routledge.

4. Downey, R. (2024). Computability and Complezity: Foundations and Tools for Pursuing
Scientific Applications. Springer.

5. Brody, J. (2025). The Joy of Quantum Computing: A Concise Introduction. Princeton
University Press.

6. Dalzell, A., & McArdle, S., & Berta, M., & Bienias, P., & Chen, C.-F., & Gilyén, A., &
Hann, C., & Kastoryano, M., & Khabiboulline, E., & Kubica, A., & Salton, G., & Wang,
S., & Brandao, F. (2025). Quantum Algorithms: A Survey of Applications and End-to-end
Complexities. Cambridge University Press.

7. Erciyes, K. (2025). Guide to Distributed Algorithms: Design, Analysis and Implementation
Using Python. Springer.

8. Morazdn, M. T. (2025). Programming-based Formal Languages and Automata Theory: De-
sign, Implement, Validate, and Prove. Springer.

Miscellaneous Computer Science & Mathematics

1. Grechuk, B. (2019) Theorems of the 21st Century. Springer.

2. Nisan, N., & Schocken, S. (2021). The Elements of Computing Systems: Building a Modern
Computer from First Principles, 2nd ed. The MIT Press.

3. Chayka, K. (2024). Filterworld: How Algorithms Flattened Culture. Doubleday.

https://algoplexity.com/~ntran
https://algoplexity.com/~ntran

ALGORITHM
ENGINEERING
o Forragea

-V

Theorems of
the 215t Century

. Valiant, L. (2024). The Importance of Being Educable: A New Theory of Human Uniqueness.

Princeton University Press.

. Lichtman, E. (2025). The Computer Always Wins: How Algorithms Beat Us at Our Own

Games. The MIT Press.

. Rojas, R. (2025). The Language of Mathematics: The Stories behind the Symbols. Princeton

University Press.

Wilson, R. (2025). Sum Stories: Equations and Their Origins. Oxford University Press.

. O’Rourke, J. (2025). The Mathematics of Origami. Cambridge University Press.

Data Science

. Alpaydin, E. (2025). Fundamentals of Probability and Statistics for Machine Learning. The

MIT Press.

Discrete Mathematics and Computing

. Ross, S., & Pekoz, E. (2023). A Second Course in Probability. Cambridge University Press.

. Devadoss, S., & O’Rourke, J. (2025). Discrete and Computational Geometry, 2nd ed. Prince-

ton University Press.

Cryptography and Security

. Garfinkel, S. (2025). Differential Privacy. The MIT Press.

Combinatorics and Graph Theory

. Landman, B., Luca, F., Nathanson, M., Nesetfil, J., & Robertson, A. (Eds.). (2022). Number

Theory and Combinatorics: A Collection in Honor of the Mathematics of Ronald Graham.
De Gruyter.

GEOMETRY

Guide to Computability
Distributed and Complexity
Algorithms]

&

‘The Importance
a

o
Being Educable

L il

L

PROBABILITY

Review of [

AUTOMATA
THEORY

Automata Theory: An Algorithmic Approach

Javier Esparza and Michael Blondin

0000
oNe¢

The MIT Press, 2023
560 pages, $80 Hardcover

Review by
Mario Leston Rey

CMCC

Universidade Federal do ABC

1 Overview

Consider the following problem: suppose we are given an infinite set U, and we want to represent
subsets of U. The operations of interest on these subsets are the Boolean operations from set theory,
such as intersection, union, and complementation. In addition, operations on relations—subsets of
U x U—such as projection and join (composition), must also be supported. The next table (taken
from the book) summarizes these operations on sets and relations:

Table 1: Operations and tests for manipulation of sets and relations.

Operation on sets Returns
Complement(X) U\X
Intersection(X,Y) XNy
Union(X,Y) XUY
Test on sets Returns

Member(z, X)
Empty(X)
Universal(X)
Included(X,Y)
Equal(X,Y)

true if z € X, false otherwise
true if X = (), false otherwise
true if X = U, false otherwise
true if X C Y, false otherwise
true if X =Y, false otherwise

Operation on relations

Returns

Projection_1(R)
Projection 2(R)
Join(R, S)
Post(X, R)
Pre(X, R)

m(R) ={z: 3y (z,y) € R}

m2(R) = {y : Iz (z,y) € R}
RoS={(z,2):Jye X (z,y) € RA(y,2) € S}
postp(X)={y€U:3x € X (z,y) € R}
preg(X)={yeU:3zx € X (y,z) € R}

An infinite set has an uncountable number of subsets.

The set of possible data structures,

however, is countable, since each one is a finite object. As a consequence, there exist subsets that
cannot be represented by any data structure. Thus, any data structure for manipulating infinite sets

1©2025 Mario Leston Rey

must strike a balance between expressiveness (which sets can be represented) and manipulability
(which operations can be efficiently implemented).

The book presents a different perspective on the theory and applications of finite automata,
both on finite and infinite words, highlighting their role as data structures capable of solving certain
instances of this problem.

To give a taste of the technical content and style of the book, a few formal definitions are
included throughout this review.

To begin the story of the book, we introduce its main character. Informally, a semi-automaton is
an entity consisting of states and transitions. A distinguished nonempty subset of states is declared
wnitial. Each transition has an origin and a destination, which are states, and a label, which is a
symbol taken from some alphabet >—a nonempty and finite set of symbols. A word over X is a
finite sequence of symbols taken from ¥, and a language over ¥ is simply a subset of ¥*, the set
of all words over . An w-word over X is a function from N to Y. The set of all such functions is
denoted by ¥¥, and an w-language is a subset of .

The evolution of a semi-automaton is captured by the notion of a run (or a computation), which
is simply an alternating sequence of states and transitions that begins in an initial state (and, when
the run is finite, it ends in a state), such that if p, ¢, ¢ are consecutive elements of the run, and p, g
are states and t is a transition, then p is the origin and ¢ is the destination of . Each run c¢ spells
out a word, which is obtained by concatenating the labels of the transitions that make up c.

Thus, a semi-automaton can be defined as a tuple (@, X, d, Qg), where

e () is a finite set of states;

Y. is a finite input alphabet;

§:Q x ¥ — 29 is a transition function; and

0 # Qo C Q is the set of initial states.

A semi-automaton is said to be nondeterministic in general, and deterministic whenever Qg is
a singleton set and (g, a) is a singleton set for each ¢ € @ and a € ¥. In this case, both sets are
identified with their unique element. These two notions play a fundamental role throughout the
text.

Specializations of the notion of semi-automaton yield data structures capable of representing
(possibly infinite) subsets of an infinite set.

2 Summary of Contents

The first part of the book, consisting of Chapters 1 to 9, is dedicated to finite automata over finite
words. The second part, comprising Chapters 10 to 14, deals with w-automata—automata designed
to handle infinite words.

Chapter 1 introduces regular expressions and variants of finite automata, and shows that these
formalisms constitute what the authors refer to as a trinity. Each provides a finite mechanism for
representing languages, and they are equally expressive in the sense that they define the same class
of languages. We now turn to define the main entities of the chapter.

The discussion begins with the usual suspects: alphabets, words, and languages. In addition to
the standard set-theoretic operations on languages, the chapter introduces language concatenation

and iteration (Kleene star). It then moves to regular expressions, which are syntactic forms used to
generate languages. A reqular expression over an alphabet X is defined by the following grammar:

rao=0lelal(rr)| (r+r)]|r,

where a € X. The language L£(r) generated by a regular expression r is defined inductively as
follows:

LD)y=0
L(e) ={e}
L(a) = {a}
L(r1+1re) = L(r1) U L(r2)
L(rire) = L(r1) - L(re)
L(r*) = L(r)"

A language over Y is said to be regular if it is generated by a regular expression over .
A nondeterministic automaton is a tuple A = (Q, %, §, Qo, F'), where

e (Q,%,0,Q) is a finite semi-automaton; and
e [C (Q is the set of final states.

The automaton A is said to be deterministic when the underlying finite semi-automaton is
deterministic.

Another fundamental notion is that of acceptance, which allows one to associate a language
with each finite automaton. A word w is accepted by A if there is a run that spells w and ends in
a state inhabiting F'. The language accepted by A is the set L(A) of all words accepted by A.

A graph-theoretical perspective on nondeterministic automata reveals that, for the purpose
of language acceptance, only the states reachable from some initial state are relevant. Such an
automaton is said to be in normal form.

The central result of the chapter establishes the equivalence of the three core formalisms. For
all languages L over X:

(i) L is a regular language;
(ii) L is accepted by a nondeterministic finite automaton;
(iii) L is accepted by a deterministic finite automaton.

To prove this equivalence, the chapter introduces two intermediate models: NFA-¢, which are
NFAs allowing e-transitions (i.e., transitions that consume no input symbol), and NFA-reg, in which
transitions may be labeled by regular expressions rather than single symbols.

The proof that (ii) implies (iii) employs the well-known subset construction. This construction
transforms a nondeterministic automaton A with n states into a deterministic automaton D with 2"
states such that £(A) = £(D). The chapter also presents an algorithm that constructs D directly
in normal form, helping mitigate the exponential state blowup in practice.

Chapter 2 deals with the minimization of DFA and the reduction of the number of states
of an NFA. These are critical tasks when viewing automata as data structures for representing

start — {abb, aba} 4, {bb, ba} b, {b,a}
a a,b

LTRSS
a,b

Figure 1: The figure illustrates the canonical automaton for {abb, aba}.

languages. It shows that the uniqueness of the minimal DFA provides a canonical representation of
a regular language. The chapter also presents a heuristic for reducing the size of nondeterministic
finite automata (NFA) and proves that computing a minimal NFA is a PSPACE-complete problem.
Moreover, it shows that there is no canonical minimal NFA.

For a regular language L C ¥*, a DFA A that accepts L is said to be minimal if every DFA
that recognizes L has at least as many states as A.

The canonical automaton of a language plays a fundamental role. Given a language L C ¥*
and a word w € ¥*, the residual of L with respect to w is the language

LY ={ue X" |wue L}.
The canonical automaton of L is the automaton

Cr=(Qr,%,0r,q01L, FL),
where:
o Qr={L"|weX}
e 0r(K,a) =K for each K € Qp and a € ¥;
* qor = L;
o F ={KeQ|cec K}

It is shown that for each regular language L the automaton Cp, is the unique minimal DFA up
to isomorphism that recognizes L (while the notion of isomorphism is not formally defined in the
text, its meaning is made clear through the structure of the proof.).

The text presents Hopcroft’s version of Moore’s algorithm [3], which is a partition refinement
algorithm whose main idea—to partition a block into two disjoint blocks—is also used to reduce
the number of states of an NFA.

Let A =(Q,X%,9,q,F) be a deterministic finite automaton (DFA). Moore’s algorithm consists
of the following iterative procedure. Start with a partition P of @ such that every block P € P
satisfies either P C F or PN F = (). That is, the initial partition is {F,Q \ F'}. At each step, the
algorithm checks whether the automaton obtained by collapsing each block P € P into a single
state yields a DFA. If so, the algorithm terminates. Otherwise, it identifies a block P € P that is

non-deterministic with respect to the current partition — meaning that there exist states p,p’ € P
and a symbol a € X such that §(p,a) and §(p/,a) lie in different blocks of P. In that case, the
algorithm refines the partition by splitting P into two subsets:

Pr={qe P|d(qga)=06(p,a)} and P\ P;.

The next iteration begins with the updated partition (P \ {P}) U{Pi, P\ P1}.

At this point, it is clear that finite automata provide a finite representation of a language.
Chapter 3 shows how to implement the set-theoretic operations listed in Table [I| under the follow-
ing assumption: given a universe U, there exists an injection s : U — X*, called an encoding, such
that the set {s(z) | x € U} forms a regular language over . The chapter focuses on implementing
operations on regular subsets of U — that is, subsets X C U such that {s(z) | x € X} is regular
— via corresponding constructions on finite automata. For instance, given two finite automata A;
and Ag, it shows how to construct a new automaton that accepts £(A;)oL(Az), where ¢ is a binary
operation on languages. Methods are presented for computing the union, intersection, and com-
plement of regular languages by manipulating the structure of deterministic or nondeterministic
automata.

The implementation of binary operations involving two DFAs A; = (Qi, %, i, qoi, F;) for i €
{1,2} can be achieved by taking the DFA induced by the set of states reachable from (qo1, qo2)
of the pairing (or product) of the automata, i.e, the DFA A = (Q1 X Q2,%, 9, (¢o1,q02), F'), where
((q1,92),a) = (61(q1,a),02(q2,a)) for each q1,q2 € Q1 X Q2 and a € X, and appropriately selecting
the set I of final states. The text shows an algorithm that given two automata returns a product
automaton that is in normal form. It also emphasizes that this construction does not, in general,
preserve minimality, and so the resulting product automaton is not necessarily minimal.

Beyond these operations, the chapter addresses the following decision problems related to regular
languages:

e Membership: whether a given word belongs to the language accepted by a given finite au-
tomaton;

Emptiness: whether the language accepted by a finite automaton is empty;

Universality: whether a finite automaton accepts all words over the alphabet;

Equality: whether two finite automata accept the same language;

Containment: whether the language of one finite automaton is contained in that of another
finite automata.

All these problems are shown to be decidable, and efficient algorithms are presented in the
case of DFAs. While membership and emptiness remain tractable for NFAs, the chapter closes by
proving that universality and language inclusion are both PSPACE-complete problems. However,
for both universality and inclusion, a refined subsumption-based algorithm, which is variant of
subset construction, is introduced to control the explosion of explored subsets in practice.

The development throughout the text provides a clear picture of the view of finite automata as
a data structure with its emphasis on constructions and algorithms. The PSPACE-completeness
proof showcases the limits of this paradigm when nondeterminism is involved.

Chapter 4, the first chapter devoted to applications, focuses on two instances of the pattern-
matching problem. In the first, given a nonempty word ¢t € ¥* (the text) and a regular expression

p (the pattern) over X, the goal is to find the length j of the shortest prefix u of ¢ — if one exists —
such that a word in £(p) is a suffix of u. The second instance is the special case where p is itself a
word in X*.

For the first variant, the chapter presents NFA and DFA-based algorithms. These work by
constructing a finite automaton A that accepts the language £(X*p) and checking whether there
exists a prefix of ¢ that belongs to £(X*p) using A. The trade-offs between the NFA and DFA
constructions are discussed, particularly the potential state explosion when converting the regular
expression into a DFA.

Next, the chapter turns to the second instance, the word case, in which the pattern p is itself
a word. This restriction makes the construction of a minimal DFA recognizing £(¥*p) straight-
forward. To improve the time complexity of the resulting algorithm, the notion of lazy DFAs (a
restricted case of a two-way automata of Rabin and Scott [I]) is introduced. The chapter concludes
with a novel derivation of the celebrated Knuth—Morris—Pratt algorithm.

Chapter 5 returns to Table [1| to show how operations on relations can be implemented. The
conditions for an encoding are relaxed as follows. Given a universe U and an alphabet X that
includes a padding symbol, say #, a partial encoding is an encoding s : U — X* (as in Chapter 3)
such that for every = € U, the last letter of s(z) is different from #. An encoding of U over ¥*
derived from s then maps each = € U to the (infinite) set {s(x)#" | n > 0}. In this approach, each
object x is encoded as a (regular) language over X.

Given such an encoding of U over >* and an NFA A, an element x € U is:

e accepted by A if A accepts all encodings of x, and
e rejected by A if A accepts none of them.

Moreover, A is said to recognize a subset X C U if
L(A) ={w|3Jr € X : wis an encoding of x}.

To handle relations, the chapter introduces the notion of a transducer over an alphabet YX—that
is, an NFA over the alphabet ¥ x ¥. Given words u = ajas---a, and v = biby---b, over X, a
transducer T" accepts the pair (u,v) if it accepts the word (a1, b1)(ag,b2) - - - (ay, b,). This definition
motivates the use of the aforementioned encoding scheme in this context, since transducers, as
defined, are length-preserving. The notion of acceptance must then be extended to transducers in
a way analogous to the extension made for NFAs.

The chapter then nicely presents algorithms for efficiently implementing the relational opera-
tions over regular relations — subsets of U x U which can be recognized by transducers — listed
in the table, including projection, join, post-image, and pre-image. The presentation contains a
carefully chosen set of examples that illustrate the constructions in a clear way.

Now, we turn to Chapter 6. Chapter 3 presented implementations of the operations of union,
intersection, and complementation for DFAs. However, even when these algorithms are applied to
minimal DFAs, the resulting automata are not necessarily minimal—except in the case of comple-
mentation. For operations involving relations, the situation is even more critical, as determinism
may not be preserved, particularly in the case of projection and join operations. This chapter
presents implementations that produce minimal DFAs as output, with no need for an additional
minimization step, under the assumption that the universe is finite. In this setting, all elements of
the universe can be encoded using words of fixed length over some alphabet.

It is possible to view the universe of regular languages over ¥ as an automaton, called the
master automaton, introduced in Chapter 3, whose states are the regular languages, and where
there is a transition from a regular language L; to a regular language Lo labeled by a € X if and
only if Ly = L{. Moreover, the set of final states is the set of all regular languages that contain the
empty word. For a regular language L, the automaton induced by the set of states reachable from
L, called an L-induced automaton, is the minimal automaton that recognizes L. With this, it is
possible to obtain directly a minimal automaton for representing any finite language (see Figure .

Let X" denote the set of all words of length n, and consider a finite set £ whose elements are
subsets of ¥™. A multi-DFA for L is simply the union of all L-induced automata, where the union is
taken over each L € £. The chapter then proceeds with a detailed exposition of how to implement
the operations listed in Table [1| both for sets and relations, in this special case of multi-DFAs.
These constructions reuse the states of the master automaton, allowing efficient implementations
of set and relation operations without duplicating structure unnecessarily.

The chapter closes by showing how binary decision diagrams can be uses as minimal automata
of a certain kind.

Chapter 7 is the second one of the first part dedicated to applications, and turns to the
problem of verification of safety properties of sequential and concurrent programs with bounded-
range variables.

Consider programs whose semantics transform an entity, called a configuration, into another
configuration. With this setup, we can, for instance, construct an automaton whose states are all
reachable configurations, plus an initial state, say 7. All of its states are final. There is a transition

c i ¢ from a reachable configuration c¢ to a configuration ¢’ if the semantics of the program allow
the transformation of ¢ into ¢/. Moreover, for each initial configuration ¢, there is a transition i — c.
We are interested in the case where the set of configurations, say C, is finite. An execution is thus
a run of this automaton, and can be seen as a word over the alphabet C—that is, as a language
over C.

To test whether the set of executions £ C C* of a program satisfies a certain property, which
could be given by a regular expression over C, we can construct the automaton representing the set
of executions, as well as the automaton representing the subset P of C* that satisfy the property,
and then check whether their intersection, E'N P, is empty. This is the idea behind automata-based
verification.

Network automata, discussed next, constitute an alternative way of modeling a program.
Roughly, the idea is to model the behavior of each component of a configuration using a non-
deterministic finite automaton (NFA). Thus, a network automaton is a tuple A = (4y,..., 4;,) of
NFAs, possibly over different alphabets.

The text presents an algorithm that constructs an equivalent NFA, the asynchronous product,
from a given network automaton. This construction is related to pairing and in the worst case,
grows exponentially with respect to the size of the network. It also provides a modification of this
algorithm that computes an NFA — called the system automaton — which represents the set of all
executions of a program modeled by the network automaton.

Next, it shows how network automata can model concurrent programs. To this end, the text
uses Lamport and Burns’s mutual exclusion algorithm as an illustrative example.

The last section of the chapter is dedicated to the state explosion problem. As previously
discussed, the verification task essentially reduces to deciding whether the intersection L(A)NL(r) is
empty, where A is an automaton that recognizes the set of program executions over the configuration

10

space C', and r is a regular expression that generates the subset of C* consisting of traces that
violate the desired property. Notice that when the system is modeled as a network automaton, A
corresponds to the asynchronous product of the individual components, and thus its state space
may grow exponentially with the size of the network. The verification problem is shown to be
PSPACE-complete. An algorithm is then presented to check whether a property is violated, which,
in a sense, constructs the asynchronous product on the fly.

The chapter concludes with a discussion of compositional verification and symbolic state-space
exploration, followed by a short treatment of safety and liveness properties.

In Chapter 8, the relationship between automata and logic is explored. Consider, for instance,
the following declarative definition of a language: the set of words over a, b that contain an even
number of as and an even number of bs. It is straightforward to construct a finite automaton
that recognizes this language. Producing a regular expression that generates it, however, is less
immediate. Of course, the equivalence between both models allows one to convert from one repre-
sentation to the other. As this example illustrates, for certain languages, a declarative definition is
more natural. This motivates the study of logical formalisms that enable languages to be defined
declaratively.

The chapter begins by introducing a predicate logic over words, essentially a first-order logic in
which atomic formulas express properties of word positions, and quantification ranges over those
positions. It then presents a fundamental result showing that this logic is not expressive enough
to define all regular languages. Specifically, it is shown that the language {a®® | n > 0} is not
definable in this logic.

Next, the chapter introduces monadic second-order logic (MSO) on words, which extends first-
order logic with two key features:

1. variables that range over sets of positions, and
2. the ability to express that a given position belongs to such a set.

Thus, in addition to quantification over positions, one can also quantify over sets of positions. The
chapter presents a proof of the Biichi-Elgot—Trakhtenbrot theorem, which states that a language
is regular if and only if it is definable by a formula in monadic second-order logic on words. As in
previous chapters, several examples are provided to illustrate the constructions used in the proof,
and they are particularly effective in clarifying the key ideas.

Chapter 9 discusses Presburger arithmetic and constitutes the third chapter on applications.
Presburger arithmetic (PA) is a first-order language used to express numerical properties involving
addition and comparison. The language of PA includes the constants 0 and 1, and features a single
binary function symbol, namely +, which is written in infix form as usual. It also includes a single
binary predicate symbol, <, likewise written in infix form. This syntax allows one to write formulas
suchas 3z (z <y+ 1Ay <z+x).

Let ¢ be a formula in PA. The chapter shows how to construct a transducer A, such that the
language recognized by A, corresponds to the set of natural numbers (or integers) that satisfy
. In line with the book’s algorithmic perspective, the construction is clearly described through a
careful exposition of the underlying algorithms. The techniques from Chapter 5 make it possible
to reduce this problem to that of constructing a transducer for atomic formulas of the form

a1x1 + -+ apxy < b,

11

for which the chapter provides an algorithm along with a proof of correctness. It also addresses
the special case of equations and presents an algorithm to handle that case as well. As in earlier
chapters, the presentation is supported by clear and instructive examples that significantly aid
comprehension.

Chapter 10 marks the beginning of the second part of the book, which focuses on the study
of automata over infinite words. In line with Chapter 1, it begins by introducing the notion of
an w-regular expression over an alphabet X, which are syntactic forms generated by the following
grammar:

su=rY|rs|s+s,

where 7 is a regular expression over Y. The meaning of an w-regular expression s (defined re-
cursively) is a subset L, (s) of 3“. This leads to the notion of an w-regular language: a subset
L of ¥* for which there exists an w-regular expression s such that L = L£,(s). With this defini-
tion in hand, the chapter begins the search for data structures (automata) capable of representing
such languages. The notions introduced here are more subtle, and the quest not only for a trinity
among the various models presented, but also for closure under Boolean operations, becomes more
elaborate and intricate.

The main character of the chapter is an w-automaton, defined as a pair A = (5, «), where
S = (Q,%,0) is a finite semi-automaton and « : 29 — {0,1} is an acceptance condition. This
abstract formulation elegantly subsumes all types of w-automata presented in the chapter.

Given an infinite run p of S, let inf(p) denote the set of states that occur infinitely often in p.
The run p is said to be accepting if a(inf(p)) = 1, and a word w € X is accepted by A if there
exists an accepting run p of .S that spells w. The language recognized by A is defined as

L,(A) ={w e X¥ | A accepts w}.

The chapter first introduces Biichi automata and proves constructively that w-regular expres-
sions and Biichi automata are equivalent models with respect to w-regular languages. A (nonde-
terministic) Bichi automaton (NBA) is an w-automaton (S, «) such that « is a Biichi condition,
meaning that there exists a set F' C @ such that «(Q’) = 1 if and only if Q'NF # () for all Q' C Q.
If S is deterministic, then A is called a deterministic Biichi automaton (DBA).

The chapter then shows that NBAs and DBAs are not equally expressive, and so DBAs cannot
recognize all w-regular languages. This is a manifestation that the notion of a trinity becomes more
subtle in the setting of infinite words.

The next model introduced is the co-Biichi automaton, defined by an acceptance condition
a:29 - {0, 1}, called a co-Biichi condition, such that there exists a subset F' C Q with «(Q’) =1
if and only if Q'NF =) for all " C Q. The chapter presents a determinization algorithm that, given
a nondeterministic co-Biichi automaton (NCA) A, returns a deterministic co-Biichi automaton D
such that £, (A) = L,(D)—that is, both w-automata recognize the same w-language. However, it
is also shown that NCAs do not recognize all w-regular languages— yet another manifestation of
the subtlety involved in establishing a trinity for infinite-word automata.

The search for the trinity culminates with the introduction of Rabin automata, the next model
presented in the text. A Rabin automaton (NRA) is an w-automaton A = (S, «) such that a is a
Rabin acceptance condition; that is, there exists a finite set R C 29 x 29 such that for each Q' C Q,
we have:

a(Q)=1 < J(F,G) e Rsuch that Q' NF # 0 and Q' NG = 0.

12

In other words, a run p is accepting if there exists a pair (F,G) € R such that p visits states in F
infinitely often and states in G only finitely often.

The book provides a constructive proof of the equivalence between NRAs and w-regular expres-
sions, but refrains from proving the equivalence between nondeterministic and deterministic Rabin
automata (DRAs). The complexity of union, intersection, and complementation is analyzed for
DRAs. It is shown that union can be implemented by pairing, whereas intersection cannot. More-
over, complementation requires a modification of the underlying semi-automaton. Thus, unlike the
case of deterministic finite automata, not all Boolean operations can be implemented with ease.

The chapter then delves into Streett, Parity, and Muller automata. Table |2 extracted from the
text, summarizes the results involving these models.

Table 2: Summary of results of automata on infinite words.

Automaton Type Expr. Det. Union Inters. Comp.
NFA/DFA Y Y Y Y Y
NBA/DBA (Biichi) Y N Y N N
NCA/DCA (Co-Biichi) N Y N Y N
NRA/DRA (Rabin) Y Y Y N N
NSA/DSA (Streett) Y Y N Y N
NPA/DPA (Parity) Y Y N N Y
NMA/DMA (Muller) Y Y Y Y Y

e Expr. Every w-regular expression (for the row NFA/DFA| every regular expression) can be converted into an
automaton of this type.

e Det. For every nondeterministic automaton of this type, there is an equivalent deterministic automaton of
the same type.

e Union. Union of deterministic automata of this type can be implemented using the pairing construction.
e Inters. Intersection of deterministic automata of this type can be implemented using the pairing construction.
e Comp. Complementation of deterministic automata of this type can be implemented without changing the

semi-automaton or the type of the acceptance condition.

The entries of the table are as follows: N (the property does not hold), Y (the property holds, but the underlying
conversion or algorithm requires exponential time), and Y (the property holds and the underlying conversion or
algorithm only requires polynomial time). In particular, Y indicates that the resulting automaton has polynomial
size in the input.

Chapter 11 shows how to implement binary operations on sets under the assumption that
objects are encoded as w-words, and thus the set of encodings defines an w-regular language,
making automata on infinite words a suitable data structure for representing these sets. Table
indicates that deterministic Muller automata can be used to implement union, intersection, and
complementation, although all three operations incur a worst-case exponential blow-up. The table
also shows that Rabin, Streett, and parity automata exhibit the same behavior with respect to two
out of these three operations.

The chapter then moves from deterministic to nondeterministic automata. To this end, it
introduces nondeterministic generalized Biichi automata (NGAs), which differ from Biichi automata
by having a set G of accepting sets. A run is considered accepting if it visits each set in G infinitely
often. The chapter provides an algorithm that, given a GBA, constructs an equivalent NBA.
Moreover, it presents solutions to the union and intersection problems involving NGAs. The union

13

construction, not surprisingly, resembles the one for NFAs, whereas the intersection relies on a
pairing technique, supported by an algorithm that produces an NGA in normal form.

The complementation problem, however, cannot be addressed using the approach employed for
NFAs, since there exist NGAs for which no equivalent deterministic generalized Biichi automaton
exists. While the use of Muller automata could solve this issue, the corresponding construction is
rather complex. Instead, the chapter follows a different strategy: it first transforms the NGA into
an NBA and then applies a complementation algorithm for NBAs, which is presented in full detail
throughout the remainder of the chapter.

It is worth to point out the use of the notion of the directed acyclic graph of a w-word w —
a construction that captures all possible runs of the automaton on an input word. This notion,
introduced in Chapter 10 in the proof of equivalence between NCAs and DCAs, is employed again
in proving the correctness of the complementation algorithm. Given a semi-automaton (Q, %, §, Qo)
and a word w = wowiws - - - € X, the directed acyclic graph of w is the graph (V, E), where V" and
E are the smallest sets satisfying:

e (q,0) € V for every q € Qo;
e if (g,i) € V and ¢ € §(q,w;), then (¢/,i+ 1) € V and (q,i) > (¢/,i+ 1) € E.

Chapter 12 is dedicated to the emptiness problem for NGAs, since problems such as mem-
bership, containment, and equivalence can all be reduced to it. For the purposes of the emptiness
problem, transition labels are irrelevant, so ¢ is identified with the set

{(g,d) € Q@ x Q| Ja € X such that (¢,a,q") € 5}.

The following assumptions are made throughout the chapter regarding the primitive operations
available to the algorithms. For an NGA A with generalized Biichi acceptance condition G, the
algorithms are allowed access to:

(i) the set @ of initial states;
(ii) the set 0(g) of successors of each g € Q;
(iii) the collection {F € G | g € F'} for each ¢ € Q.

Note that, because of (ii), the algorithms are restricted to forward exploration only. Such algo-
rithms are called on-the-fly. This assumption aligns with other algorithms that operate in a similar
fashion. For instance, algorithms for computing the intersection of two NGAs also construct the
intersection in the forward direction. Therefore, to solve the emptiness problem for the intersection
of two NGAs, one can compose both algorithms in a way that avoids explicitly constructing the
intersection automaton.

The solution to the emptiness problem is presented next, based on two classical graph traversal
algorithms: depth-first search (DFS) and breadth-first search (BFS). The problem is first addressed
for nondeterministic Biichi automata (NBAs), where it reduces to deciding whether at least one
state in the Biichi acceptance set F' belongs to a cycle.

Although naive algorithmic solutions exist for this problem, the text develops a nested depth-
first search strategy, which is described in detail along with a small optimization. It is observed
that the nested DFS algorithm cannot be extended to NGAs, and therefore a conversion from an
NGA to an NBA is required.

14

The text also explores a solution based on the notion of strongly connected components (SCCs)
of a directed graph. A strongly connected component is a maximal subset S C @ such that, for
every pair of states s,t € 9, state t is reachable from s. It is well known that the directed graph
obtained by collapsing each strongly connected component into a single node is acyclic. The text
presents an algorithm, based on Tarjan’s algorithm for computing SCCs, to decide the emptiness
problem, which takes O(|Q| + |0]) time. The advantage of this algorithm is that it can be easily
extended to deal with NGAs.

The chapter closes with a description of breadth-first search algorithms for the emptiness prob-
lem in the special case of NBAs. It discusses the Emerson-Lei algorithm for NBAs and its gener-
alization to NGAs.

Chapter 13 is devoted to the verification of liveness properties of programs, while Chapter
14 addresses monadic second-order logic (MSO) over w-words. The latter presents a construction
of a Biichi automaton that recognizes the set of w-words satisfying a given MSO formula. These
two chapters were not read with the care they deserve and thus are not reviewed in detail here.

3 Opinion

The book presents a consistent and coherent account of finite automata operating on both finite
and infinite words. It brings to light a new perspective — finite automata as data structures — which
reflects the influence of key research areas in computer science, particularly verification, where
algorithmic and data-structural concerns are central.

The book offers a clear and accessible exposition of its topics. The chapters are carefully
organized, and each subject is developed in a steady and logical progression. Particular care is
devoted to the choice of examples, which are well-crafted to illustrate the key ideas. Algorithms
are presented in a style that is comfortable for computer scientists, although I personally favor a
more functional approach that avoids side effects. A particularly strong point of the book is the
inclusion of exercises along with detailed solutions. They complement and enhance the value of
the text. Finally, the book includes previously unpublished material and reformulations of known
results, and delivers what it promises — a distinct perspective on automata theory — making it a
valuable contribution to the literature.

Textbook presentations of topics related to w-automata are scarce. For instance, the book
by Khoussainov and Nerode [2], which is not cited in the bibliography, offers a presentation of
Bichi, Muller, and Rabin automata with a distinct flavour that complements the present work.
Connections to logic are also explored in Schneider [4] and Straubing [5], both likewise absent
from the book’s references. Schneider’s text, in particular, provides a comprehensive and detailed
treatment of verification. Finally, I would like to mention the book by Sakarovitch [3], which, in its
first part, presents a beautiful account of classical automata theory (on finite words), and is also
not cited in the bibliography.

As for prerequisites, a solid background in discrete mathematics is essential. Moreover, the
book assumes what is often referred to — though never defined — “mathematical maturity”, which
includes comfort with formal definitions, inductive proofs, and abstract reasoning. While not
strictly necessary, a familiarity with basic notions of automata theory and grammars would certainly
be beneficial.

The book can be used at the undergraduate level, possibly as a second course in automata
theory, or even as a first course, provided the students already have a solid mathematical and

15

computer science background. Naturally, it also can be used as a textbook for an introductory
graduate-level course.

References

[1] Hopcroft, J. and Ullman, J. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, First Edition, Reading (MA), 1979.

[2] B. Khoussainov and A. Nerode. Automata Theory and its Applications. Progress in Computer
Science and Applied Logic, vol. 21. Birkh&user, 2001.

[3] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
[4] F. B. Schneider. Verification of Reactive Systems. Springer, 2004.

[5] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser, 1994.

16

Review of [

Computability and Complexity
Hubie Chen

The MIT Press, 2023
416 pages, $65 Hardcover

Review by

David Luginbuhl (dluginbuhl@fit.edu)
Electrical Engineering and Computer Science
Florida Institute of Technology

1 Overview

Theory of computation and computational complexity have been well-studied and written about
extensively over the past several decades, much of it chronicled in this publication. We are all
familiar with the many textbooks that have captured the themes in a way that is accessible to
college students (and we all have our favorites, I am sure). While many of these texts cover
topics in both computability and complexity, they tend to emphasize the former to establish the
fundamentals (and my experience has been that focusing on computation usually takes up most, if
not all, of a semester-long formal languages course). Hubie Chen, in his new book Computability
and Complezity, strives to achieve more of a balance between these two main topics. Through his
highly mathematical treatment and in-depth proofs, he also builds a strong connection among the
major themes of the text.

2 Summary of Contents

In the Preface, Chen describes the audience for this book, stating that it is written for a course “at
the upper undergraduate level.” He also maintains that it would be useful for “students, researchers
and workers in disciplines that draw on or depend on this theory” or as a reference for a theory-
related course.

In the Introduction, Chen says that he is “motivated by two questions:

e What is computable?
e What is efficiently computable?”

Chapters 1 and 2 answer the first question, with a focus on finite state machines (Chapter
1) and Turing computability (Chapter 2). Chapters 3 and 4 comprise a detailed response to the
second question, exploring issues of time-bounded computation (Chapter 3) and several additional
complexity-related topics (Chapter 4).

1©2025 David Luginbuhl

17

The Agreements section in the front matter provides a very short introduction (three pages) to
the mathematical foundations necessary to understand computation, particularly, formal language
theory, set theory, and relations and functions. The treatment is terse, but this knowledge is
assumed coming in, and Chen is only ensuring we are all on the same page in terms of notation. I
would add that readers will want to have a high comfort level with mathematical proofs, because
they are the bread and butter of this book, especially in the latter part.

Each of the four chapters ends with an extensive Fzxercises and notes section, which explores
some concepts from the chapter in more detail, introduces interesting related topics, and provides
a large number of exercises.

3 Chapter Highlights

Chapter 1 Automata Theory — This chapter might be more appropriately titled Automata
Theory and Regular Languages. DFAs, NFAs, and regular expressions are all introduced, but unlike
many texts in this area, Chen does not address any language classes between those represented by
DFAs and those represented by Turing Machines. This is just an observation and is not meant
as a critique; Chen does not need the intermediate languages or automata to support his overall
discussion of computation.

One interesting aspect of Chen’s approach to exploring finite automata is that he eschews
extending the 0 function (0*) in favor of configurations of the machine (indicating the current state
and the rest of the string yet to be consumed). Chen uses this construct not only to walk through
a computation, but also to define acceptance, the language of a machine, and as a result, whether
or not a language is regular. Most theory texts introduce students to both the extended § function
and configurations, but Chen emphasizes the configuration approach.

The rest of the chapter is a fairly straightforward treatment of the various representations of
regular languages - NFAs, e-NFAs, and regular expressions. Closure properties are covered.

Chen introduces pairwise separability of strings as a way to discuss non-regularity of strings
and minimization. The Pumping Lemma is found in the Ezercises and notes section.

Chapter 2 Computability Theory — In Chapter 2, Chen turns to the concept of computation
and to the Turing machine. As he says, “the halting deterministic Turing machine will be presented
as a formalization of the intuitive notion of algorithms.” So a definition of algorithms is in order, and
I like Chen’s: “a finite list of instructions; each instruction is finite and unambiguously describes
an action performable mechanically, without recourse to judgment or creativity. An algorithm
operates deterministically, and in discrete time steps. When executed on an input, an algorithm
terminates after a finite number of steps, producing the desired output” (p. 71-72). Plenty of
definitions of algorithms exist, but this one provides a nice connection to Turing machines.

For classes of languages, Chen prefers the terms computable and computably enumerable to
recursive and recursively enumerable.

Chen introduces encodings to present concepts like Universal Turing machines and to prepare for
the distinctions between computably enumerable, computable, and non-computably enumerable.

The chapter contains standard Turing machine topics such as closure properties and alterna-
tives to deterministic Turing machines, in particular, nondeterministic Turing machines, multi-tape
machines, and Random Access Machines. Reductions from one language to another are discussed
near the end of the chapter to set up for further non-computability results.

18

Chapter 3 Complexity Theory — Having taken us through the basics of computation, Chen
moves to complexity results, which I would say form the heart of this book. The first two chapters
really set the stage for what follows here, and although the book (as indicated by the title) is
about both computation and complexity, the coverage of complexity in this chapter is especially
comprehensive and detailed. Because of this, I will provide a bit more detail on this chapter.

The first section provides some background in graph theory and focuses in particular on Eulerian
cycles and graph coloring as basic algorithms for investigating complexity. Graphs are explained in
detail, and associated problems are formalized as languages using the string encoding introduced
in the previous chapter. The point here is to demonstrate their computability and also to use them
as a basis for discussing time-efficient computation.

Chen then introduces time-bounded computation for both deterministic and nondeterministic
machines and uses this to define PTIME and NP. Eulerian cycle detection and 2-colorings are
provided as examples of PTIME languages - detailed proofs are provided. A non-graph example,
determining whether an integer is a proper divisor of another integer, is also noted as a PTIME
language.

Next up are NP languages, with Chen presenting some fundamentals and also establishing the
basic relationship between NP and PTIME. Of course, he addresses “The P vs NP question.” He
gives some attention to the concepts of solving and wverifying as a way to address this question,
characterizing it as follows: “Throughout human experience, the act of creating has been felt to
be distinctly more challenging than the act of evaluating a creation; whether or not this perceived
discrepancy is genuine, in the milieu of polynomial-time computation, can be seen as the heart of
the P versus NP question!” (p. 159)

Several languages are examined that are in NP, such as HAMILTONIAN CYCLE and 3-COLORING.
Chen provides an alternative formalism for considering whether a language is in NP by defining
the concept of a polynomial time deterministic verifier and proving in great detail that a language
is in NP if there is a verifier for the language.

Chen describes closure properties of PTIME languages, with a focus on complementation in
order to introduce coNP. He then describes and provides fundamental relationships between NP
and coNP.

In order to discuss NP-completeness, we must have an understanding of reductions. To ex-
emplify the concept of reducibility, Chen again makes use of graph-theoretic concepts, this time
with the languages of INDEPENDENT SET and CLIQUE. In this case, he shows that INDEPENDENT
SET reduces in polynomial time to CLIQUE and (for good measure) to VERTEX COVER. Chen also
discusses basic properties of reducibility.

Chen introduces NP-completeness and NP-hardness using the notion of polynomial time re-
ducibility, which sets us up for the first NP-completeness result. While some texts begin with
BOOLEAN SATISFIABILITY (essentially, Cook’s theorem), Chen chooses instead CIRCUIT SATISFIA-
BILITY, showing that any NP language can be reduced to CIRCUIT SATISFIABILITY. He also examines
coNP-hardness and coNP-completeness using languages related to CIRCUIT SATISFIABILITY.

Chen presents several additional NP-completeness proofs, moving from CIRCUIT SATISFIABILITY
to BOOLEAN SATISFIABILITY and a number of variants. From there, Chen uses reductions to
show NP-completeness for various graph problems, including INDEPENDENT SET, VERTEX COVER,
DOMINATING SET, CLIQUE, HAMILTONIAN PATH and HAMILTONIAN CYCLE and related problems,
as well as TRAVELING SALESPERSON.

This chapter can serve as a reference for NP-completeness results. The proofs are set up in

19

great detail and are quite thorough. Early on, Chen even provides a strategy to approaching these
proofs for those not wishing to examine them all in detail.

Chapter 4 Further Complexity Theory — The final chapter introduces a number of additional
topics in complexity. It begins with space complexity, providing some definitions and fundamental
relationships between time and space. Chen defines PSPACE and discusses relationships between
PTIME and PSPACE. He introduces quantified propositional formulas to prove QUANTIFIED SAT-
ISFIABILITY as a PSPACE-complete language. He then provides a detailed discussion and proof of
Savitch’s theorem, showing that space bounds in NTMs and DTMs are polynomially related.

The next section of this chapter covers space and time hierarchy theorems. As Chen notes,
these theorems show that “for each of the resources of space and time, one can do more, with more
of the resource” (p. 291, emphasis in the original).

Chen next moves to fixed-parameter tractability and parameterized complexity, which were new
concepts to me. They appear to provide a way to examine some types of problems (certain graph-
theoretic and database query problems, for example) with more granularity than is allowed by
the standard time complexity framework. Chen summarizes this as follows: “The notion of fixed-
parameter tractability, in essence, allows one to identify problems where a seemingly unavoidable
combinatorial explosion can be confined to a parameter, and thus to finely pinpoint sources of
combinatorial hardness” (pp. 298-299). It is a fascinating topic that Chen addresses in sufficient
detail and with motivating discussion for those interested in exploring further.

The last major topic in this chapter is compilability theory, which is related to the preceding
parameterization discussion. As Chen states in introducing this concept, “When trying to solve
instances of a problem, if it is the case that multiple instances of relevance share a feature in
common, it may be fruitful to compile this feature into a format that allows for more efficient
solution, even if the compilation process is relatively expensive” (p. 332). This section sets out to
formalize that compilation process and show how it can be used.

The Ezercises and notes section of this chapter introduces two additional topics worthy of
consideration: logarithmic space complexity and treewidth. The latter is a graph-theoretic concept
that Chen uses to provide more results on parameterized complexity.

I would treat this last chapter as more of a “for further reading” chapter. For those who wish
to dig deeper into computational complexity, there is more than enough here to whet the appetite.

4 Summary

What stands out to me in Chen’s book above all else is the rigor and detail in his proofs throughout
the text. And there are a lot of proofs. But Chen is very good about including motivation and
high-level introductions to proofs where appropriate. Often, he includes intermediate results to
move the discussion forward and keep the attention of the reader. It is possible to examine many
of the proofs at multiple levels of detail. With respect to the proofs, I believe he is true to his
intent (noted in the Preface) to provide a “uniform treatment of core concepts and topics.” There
are many common threads here, and Chen does a good job of ensuring the reader is able to see
how earlier results lead us to more advanced theorems.

Referring back to Chen’s discussion of intended audiences, I would say that the first two chapters
are undoubtedly written at the upper undergraduate level. Interested undergraduate students
with the requisite mathematical maturity will be challenged by, but benefit from, the complexity

20

discussion in the latter half of the text. As a whole, the book is appropriate for a graduate course
in theory of computation and could be considered for a similar undergraduate course. 1 would
certainly recommend it as a candidate text for a graduate research seminar in this area.

I agree that the extensive proofs provided, especially those in chapters 2 and 3, make this book
useful as reference for those interested in these topics. It is deserving of a place on the bookshelf
of anyone planning to do research in theory of computation.

21

Review of [

Prime Suspects:
The Anatomy of Integers and Permutations
A Graphic Novel

Andrew Granville and Jennifer Granville
Illustrated by Robert J. Lewis

Princeton University Press, 2019
232 pages, $29.95 Paperback, $24.50 eBook

Review by

William Gasarch (gasarch@cs.umd.edu)

Gasarch: Hardy, Ramanujan, what did you think of the graphic novel Prime Suspects?

Ramanujan: I thought it was great! It was intuitive! It discussed deep concepts in number theory
and permutations and avoided proofs which would not have been appropriate for a graphic novel.
And intuitions are more important than proofs anyway.

Hardy: I didn’t like it! I found the lack of rigor disturbing. This, this, ... graphic novel is too
informal! The math was correct but there were no proofs!

Ramanujan: The appendix, which is prose, gives more information and references, so that a
reader can learn more if they want to.

Gasarch: So, Srinivasa, tell us about the main story. But don’t give too much away.

Ramanujan: The story opens with two cops, Tao and Greene, finding a body: Arnie Int is dead!
This seems related to another murder: Daisy Permutation is dead! In a normal mystery the question
would be ‘Who committed these murders?’. However, in this story they are more interested in the
similarities of the two victims. Arnie Int’s autopsy involves numbers and primes, whereas Daisy
Permutation’s autopsy involves permutations and cycles. You may wonder how an autopsy can
involve math concepts. Well. .. the world of Prime Suspects is very different from our world.

Gasarch: A crime that involves math! So Godfrey, how does it compare to the TV show Numb3rs?
(I reviewed Numb3rs in this column: https://www.cs.umd.edu/~gasarch/bookrev/37-3.pdf.)

Hardy:
1. The crime and solutions in Numb3rs make more sense.

2. The math in Numb3rs makes less sense and is often made up.

Gasarch: Did you like the story?

Ramanujan: The authors portrayed academia pretty well, though I have never seen a murder
(note from Gasarch: I have taught for 40 years and have also never seen a murder). The world of
Prime Suspects is different from ours in interesting ways.

1©2025 William Gasarch

22

https://www.cs.umd.edu/~gasarch/bookrev/37-3.pdf

Hardy: But the mystery was unsatisfying.

Gasarch: It would be hard to have a story with both correct advanced math (which this story
does) and a mystery worthy of Agatha Christie.

Hardy: Uh, Bill, recall that Ramanujan died in 1920, and Agatha Christie published her first
novel in 1920.

Gasarch: Since I portrayed you as having an opinion about Numb3rs, I can have Srinivasa knowing
who Agatha Christie is.

Ramanujan: I do. And yes, the mystery in Prime Suspects is not as good as a work by Agatha
Christie. Though that is a high bar.

Gasarch: Godfrey, is the math that is discussed already known to my readers (as was the case for
Logicomix, a graphic novel about logic that was reviewed in SIGACT News, Vol. 41, No. 2, 2010
(see https://www.cs.umd.edu/~gasarch/bookrev/41-2.pdf), or will it be new to them?

Hardy: Some of it was new to me!
Ramanujan: I had already intuited it.
Gasarch: One of you, describe the math.

Ramanujan: Numbers can be factored into primes. In 1919 Godfrey and I proved that a typical
number n can be factored into ~ loglogn primes. There are many more theorems about factoring
a number into primes. On the other hand, permutations can be factored into cycles. In 1942
Goncharov proved that a typical permutation on n letters can be factored into ~ logn cycles.
There are many more theorems about factoring a permutation into cycles.

What is amazing is that many theorems about factoring a number into primes have an analog
in factoring a permutation into cycles. I suspect your readers did not know that. Now they do!

Gasarch: So let’s wrap this up. Both of you, say something you like and dislike about the book
that you have not already mentioned.

Hardy:

LIKE: The art is great. The characters are well-drawn, and the math is well-illustrated.
Most of the character’s names were either those of mathematicians (e.g., Gauss), variants of
names of mathematicians (e.g., Langer for Lang). Oh, and there is one more curious case:
one of the main characters is a female math grad student whose name is Emmy Germain.

DISLIKE: The mystery and its resolution are not that interesting.

Ramanujan:

LIKE: In the background there are some math in-jokes.

DISLIKE: There is no character named after Godfrey Hardy or Srinivasa Ramanujan.

Hardy: Bill, how about you? Give us something you liked and something you didn’t like, and you
can’t use any of our answers. And you can’t use ChatGPT.

Gasarch: T'll give two LIKES and a DISLIKE.

23

https://www.cs.umd.edu/~gasarch/bookrev/41-2.pdf

LIKE: The authors discuss math I did not know that is interesting and deep.

LIKE: They didn’t have every sentence end with an exclamation point, which is a common
device for comic books! And a stupid one - not every sentence is that exciting!

DISLIKE: I have no criticism of the book, but I will give one of this review. Recall that
The New Mathematical Coloring Book was written in the form of a memoir (When I first
met Paul Erdés ...). Hence my review (see https://www.cs.umd.edu/~gasarch/bookrev/
NICK/soifer.pdf) was in the form of a memoir (When I first read this book ...). Since Prime
Suspects is a graphic novel, I would have wanted the review to be a in that format. But alas,
I have neither the time, money, nor expertise to pull that off! T hope that writing the review
as a conversation suffices.

Ramanujan: Bill, you always end your reviews with saying who should buy this book.

Gasarch: A non-math person could understand some of the math in Prime Suspects but might
not appreciate it. Hence I think that anyone who knows and likes math on the college level would
like it.

24

https://www.cs.umd.edu/~gasarch/bookrev/NICK/soifer.pdf
https://www.cs.umd.edu/~gasarch/bookrev/NICK/soifer.pdf

	Notable New Releases
	This Column
	How to Contribute
	Overview
	Summary of Contents
	Opinion
	Overview
	Summary of Contents
	Chapter Highlights
	Summary

