
The Book Review Column 1

by Nicholas Tran (ntran@scu.edu)

Department of Mathematics & Computer Science, Santa Clara University

1 Notable new releases

I am a fan of Sheldon Ross’ textbooks on probability; they are concise and full of interesting
exercises. He and Erol Peköz have just released a second edition of A Second Course in Proba-
bility (Cambridge University Press, 2023), which promises a rigorous but accessible and modern
introduction to a selection of advanced topics in the field.

Javier Esparza’s work includes using automata to study model checking, program analysis
and verification. His book (coauthored with Michael Blondin) Automata Theory: An Algorithmic
Approach (The MIT Press, 2023) emphasizes efficient constructions of (ω-)automata and other
algorithmic concerns.

Filterworld: How Algorithms Flattened Culture by New Yorker staff writer Kyle Chayka (Dou-
bleday, 2024) investigates the pervasive impact of algorithms on consumption and distribution of
culture and explores ways to reclaim our freedom from the digital overlord.

2 This column

James V. Rauff taught an undergraduate course on quantum computing using Quantum Computing:
An Applied Approach by Jack D. Hidary (Springer, 2021) and reports the challenges he faced with
this textbook.

William Gasarch judges the arguments against and for doing applied mathematics put forth in
A Mathematician’s Apology by G. H. Hardy (Cambridge University Press, 2012) and An Applied
Mathematician’s Apology by Lloyd N. Trefethen (Society for Industrial and Applied Mathematics,
2022).

Mikael Vejdemo-Johansson finds a couple of redeeming features in Algebra and Geometry with
Python by Sergei Kurgalin & Sergei Borzunov (Springer Nature Switzerland, 2021) despite its
tenuous connection to Python.

David J. Littleboy and S. V. Nagaraj separately review Mathematics in Computing: An Ac-
cessible Guide to Historical, Foundational and Application Contexts, 2nd ed. by Gerard O’Regan
(Springer, 2023). Both praise the book’s breadth but are not impressed by its depth.

1©2024 Nicholas Tran

1

3 How to contribute

Please contact me to write a review! Either choose from the books listed below, or propose your
own. In either case, the publisher will send you a free copy of the book. Guidelines and a LaTeX
template can be found at https://algoplexity.com/~ntran.

BOOKS THAT NEED REVIEWERS FOR THE SIGACT NEWS COLUMN

Algorithms, Complexity, & Computability

1. Knebl, H. (2020). Algorithms and Data Structures: Foundations and Probabilistic Methods
for Design and Analysis. Springer.

2. Chen, H. (2023). Computability and Complexity. The MIT Press.

3. Ferragina. P. (2023). Pearls of Algorithm Engineering. Cambridge University Press.

4. Esparza, J., & Blondin, M. (2023). Automata Theory: An Algorithmic Approach. The MIT
Press.

Miscellaneous Computer Science & Mathematics

1. Nahin, P. (2021). When Least Is Best: How Mathematicians Discovered Many Clever Ways
to Make Things as Small (or as Large) as Possible. Princeton University Press.

2. Chayka, K. (2024). Filterworld: How Algorithms Flattened Culture. Doubleday.

Data Science

1. Hrycej, T., Bermeitinger, B., Cetto, M., & Handschuh, S. (2023). Mathematical Foundations
of Data Science. Springer.

2. Zhang, T. (2023) Mathematical Analysis of Machine Learning Algorithms. Cambridge Uni-
versity Press.

Discrete Mathematics and Computing

1. Harchol-Balter, M. (2023). Introduction to Probability for Computing. Cambridge University
Press.

2. Ross, S., & Peköz, E. (2023). A Second Course in Probability. Cambridge University Press.

2

https://algoplexity.com/~ntran

Cryptography and Security

1. Tyagi, H., & Watanabe, S. (2023). Information-Theoretic Security. Cambridge University
Press.

Combinatorics and Graph Theory

1. Beineke, L., Golumbic, M., & Wilson, R. (Eds.). (2021). Topics in Algorithmic Graph Theory
(Encyclopedia of Mathematics and its Applications). Cambridge University Press.

2. Landman, B., Luca, F., Nathanson, M., Nešetřil, J., & Robertson, A. (Eds.). (2022). Number
Theory and Combinatorics: A Collection in Honor of the Mathematics of Ronald Graham.
De Gruyter.

Programming etc.

1. Sanders, P., Mehlhorn, K., Dietzfelbinger, M., & Dementiev, R. (2019). Sequential and
Parallel Algorithms and Data Structures: The Basic Toolbox. Springer.

3

Review of 1

Quantum Computing: An Applied Approach, 2nd ed.
by Jack D. Hidary

Springer Nature Switzerland, 2021
422 pages, Hardcover, $37.99, eBook, $29.99

Review by James V. Rauff
(jrauff@millikin.edu)

Department of Mathematics and Computational Sciences
Millikin University

1 Overview

Quantum Computing: An Applied Approach is an introductory textbook on quantum computing.
The book features an extensive review of the mathematics underpinning quantum computing, a
discussion of the classic algorithms of quantum computing, and implementations of the algorithms
using Cirq, an open-source Python framework for Noisy Intermediate Scale Quantum (NISQ) algo-
rithms. The mathematical chapters contain intertextual exercises with solutions. The book relies
upon an associated GitHub site for updated code, additional exercises, and other resources.

2 Summary of Contents

The text consists of three parts comprising 15 chapters. Some of these chapters contain intertextual
exercises with solutions.

Part I. Foundations

Chapter 1. Superposition, Entanglement and Reversibility.
A short outline of the basic elements of quantum physics relevant to quantum computing is given

in this chapter. The topics herein include superposition, entanglement, the Born Rule (relating
the amplitude of a quantum state to the probability of that state resulting after measurement),
Schrödinger’s equation, and reversibility. There are no exercises in the textbook, but some problems
are posed in the GitHub resources.

Chapter 2. A Brief History of Quantum Computing.
This very short chapter highlights the contributions of Feynman, Deutsch, Vazirani, Bernstein,

Simon, Shor, and Grover. It concludes with DiVincenzo’s criteria for a quantum computer. Some
problems for this chapter may be found in the GitHub resources.

Chapter 3. Qubits, Operators and Measurement.

1©2024 James V. Rauff

4

This chapter lays the groundwork for the quantum algorithms to be presented later. Here the
author defines a qubit and introduces Dirac notation along with quantum circuit diagrams. The
fundamental quantum operators/gates (X, Y , Z, Rφ, H, CNOT, CZ, Fredkin, and Toffoli) are
explained and given in matrix form and circuit diagrams. A short description of the Bloch sphere
is included. No exercises are given in the textbook, but there are several in the GitHub resources.

Chapter 4. Complexity Theory.
This very short chapter sketches the differences between the classical complexity classes P, NP,

BPP and the quantum classes BQP, EQP, and QMA. A few problems are available in the GitHub
resources.

Part II. Hardware and Applications

Chapter 5. Building a Quantum Computer.
This chapter discusses the leading paradigms of quantum computing hardware. The author

views quantum processing units (QPU) as being used in combination with classical CPUs. Nu-
clear magnetic resonance (NMR) devices, nitrogen-vacancy (NV) center-in-diamond, photonics, and
trapped ion approaches are included. There are two problems available in the GitHub resources.

Chapter 6. Development Libraries for Quantum Computer Programming.
A brief presentation of some quantum computing development libraries is the subject of this

chapter. Included are Cirq (Google), Qiskit (IBM), Forest (Rigetti), and QDK (Microsoft). Code
snippets for each library are presented. There are no exercises provided for this chapter.

Chapter 7. Teleportation, Superdense Coding and Bell’s Inequality.
The eponymous quantum circuits are explained and implemented in Cirq. There are no exercises

provided for this chapter.

Chapter 8. The Canon: Code Walkthrough.
The content of this chapter would probably form the heart of any beginning quantum computing

course. It includes a description and Cirq implementation of the Deutsch-Jozsa algorithm, the
Bernstein-Vazirani algorithm, Simon’s problem (code on GitHub, but not in the text), the quantum
Fourier transform, Shor’s algorithm, and Grover’s algorithm. The most detailed discussion is
focused on Shor’s algorithm, during which some exercises (with solutions) are given. Additional
exercises are provided in the GitHub resources.

Chapter 9. Quantum Computing Methods.
Several quantum computing programs that can be run on NISQ processors are discussed in

this chapter. Included are the variational quantum eigensolver, an application to quantum chem-
istry, the quantum approximate optimization algorithm (applied to the problem of computing the
expectation of the cost Hamiltonian), quantum neural networks, quantum phase estimation, the
HHL algorithm for solving linear systems of equations, a quantum random number generator, and
quantum walks. All are implemented in Cirq. Some exercises are provided in the GitHub resources.

Chapter 10. Applications and Quantum Supremacy.
Quantum supremacy refers to a computational task that can be efficiently performed on a quan-

tum computer beyond the capabilities of a classical supercomputer. This chapter discusses some of

5

the tasks used in demonstrating quantum supremacy. These include random circuit sampling and
quantum error correction. There are no exercises provided for this chapter.

Part III. Toolkit

Chapters 11-14 of Part III provide a review of the mathematics of quantum computing. Each
chapter has intertextual exercises. These chapters are referred to throughout the first ten chapters
of the text. They are designed to provide the definitions, theorems, and techniques needed to write
quantum computing algorithms. Here I will simply list the topics appearing in each chapter.

Chapter 11. Mathematical Tools for Quantum Computing I.
Basic vector operation (dot product, norm, etc.), complex numbers, inner product, polar form

of complex number, matrices (multiplication, addition, transpose, conjugate), and tensor products.
Set theory, Cartesian product, functions, relations, composition, linear transformations, vector

space, subspace, span, linear independence, bases, orthonormal bases, Abelian group, and fields.

Chapter 12. Mathematical Tools for Quantum Computing II.
Matrices associated with linear transformations, determinants, matrix inversion, eigenvectors,

eigenvalues, Kronecker delta function, Hermitian operators, unitary operators, direct sum, tensor
product, Hilbert space, and a summary of relationship between quantum computing and linear
algebra.

Chapter 13. Mathematical Tools for Quantum Computing III.
Boolean functions and Euler’s identity.

Chapter 14. Dirac Notation.
Using Dirac notation to represent vectors, vector operations, and tensor products.

Chapter 15. Table of Quantum Operators and Core Circuits.
A table of quantum operators and core circuits.

3 Opinion

I used Quantum Computing: An Applied Approach as a textbook for my Introduction to Quantum
Computing course during the Fall 2023 semester. My students were junior and senior computer
science majors who had taken a course in linear algebra and were proficient in Python. None of
them had any previous experience with quantum physics or quantum computing.

In the introduction Hidary gives three options for using the book in university courses. The
options are keyed to the type of student in the course: STEM majors, physics graduate students,
or computer science graduate students. My demographic seemed to fit the author’s description for
a course in quantum computing for STEM majors as they were not graduate students in either
physics or computer science. We covered the material in Chapters 1, 2, 3, 4, 6, 7, 8 and parts of 9
and 10. Because my students had already studied linear algebra, we were able to use Part III as a
resource.

I was disappointed with the text. First, the quantum physics discussion in Chapter 1 was
too sketchy and confusing for my students. My students responded better to explanations of

6

superposition and entanglement that were rooted in the matrix algebra of qubits. Hidary does use
the polarizing filter example of superposition in Chapter 1, and that’s fine. However, it was easier for
my undergraduates to see what was happening in the context of linear algebra. Hidary does do some
of that in 11.3, but it would improve the text, I think, to have that upfront. Hidary’s explanation of
entanglement on p. 8 is way too brief. Again, I would have preferred to see the concept arising from
the linear algebra calculations. The first chapter could be much longer with some of the material in
Part III incorporated. I used another text (Quantum Computing for Everyone by Chris Bernhardt)
and provided my own supplements to clarify the notions of superposition and entanglement and
the mathematics involved therein.

The problems in the GitHub resources were, except for Chapter 8, very difficult and often
tangential to the chapter material. This was another disappointment. For example, the problems
for Chapter 1 from the GitHub resources required concepts beyond those presented in the chapter.
One problem for Chapter 2 is about the CZ-gate, which had not yet been defined. Most of the
chapters in Part II had no intertextual exercises, so I needed to write my own.

I was also disappointed with the code provided. I am not surprised when printed textbook code
is out-of-date or faulty, but I was hopeful that the GitHub resources would provide up-to-date code.
That was not always the case. The faulty code was usually due to mismatches in class names in Cirq.
For example, in the text the Adder class (p. 124) inherits from cirq.ArithmeticOperation, but
that superclass is actually cirq.ArithmeticGate. My students and I needed to perform numerous
searches on the Cirq website (https://quantumai.google/cirq/start/basics) to obtain proper
syntax, as well as method and class names, in order to make the code execute properly. Fortunately,
the Cirq code for the fundamental algorithms is also available on the Cirq website, along with
tutorials.

On the positive side I liked how Hidary broke down some of the standard algorithms, like Shor’s,
into smaller code sections. That built up the algorithm using easy-to-digest pieces. The result was
that my students understood the structure of the algorithm. Also, in general it was helpful to have
the algorithms implemented rather than in pseudocode. I was able to guide my students to explore
quantum computing ideas and experiment with minimal coding. To improve the text to make it
more undergraduate-friendly, I would suggest expanding the first chapter to include the basics of
the matrix theory of qubits, design more and easier exercises for each chapter intertextually or in
the GitHub resources, and make sure the GitHub code is up to date with the current rendition of
Cirq.

Perhaps graduate students in either physics or computer science would have a much easier go
with Quantum Computing: An Applied Approach than my class did. The text contains an abun-
dance of information on quantum computing. I think physics students would find Chapter 5 of
particular interest. Graduate computer science students would be less bothered by code inconsis-
tencies and be more able to appreciate the program design. Nevertheless, I cannot recommend the
book for an undergraduate course.

7

https://quantumai.google/cirq/start/basics

Joint Review of 1

A Mathematician’s Apology
by G. H. Hardy

Cambridge University Press, 2012
First published in 1940, Foreword by C. P. Snow added in 1967

$12.00 paperback, free online, 154 pages

and

An Applied Mathematician’s Apology
by Lloyd N. Trefethen

Society for Industrial and Applied Mathematics, 2022
$36.00 hardcover, 80 pages

Review by William Gasarch (gasarch@umd.edu)

1 Introduction

In 1940 G. H. Hardy wrote A Mathematician’s Apology, which argued why pure mathematics is a
worthy endeavor. The book makes some other points and also seems to dismiss applied mathematics
as dull. The book was around 80 pages, though with the later editions’ long introduction by
C. P. Snow, it is 154 pages.

In 2022 Nick Trefethen (he goes by his middle name Nick, not his first name Lloyd) wrote a
book that looks at the tension between pure and applied mathematics, defends the latter against
Hardy’s dismissal, and also makes some criticisms of some types of applied mathematics. This book
is also around 80 pages, so the same length as Hardy’s book.

We review both books here and give an opinion of who is right. Spoiler alert: Trefethen.

2 A Mathematician’s Apology

Hardy begins by saying that works about math (like the book he is writing, and that is why he is
bringing this up) are somehow inferior to books that are math. In what sense? He doesn’t really
say, which is why I find this point of view misguided2. He seems to also think that people should
do what they are good at, and that most people are not good at anything. An intelligent discussion
about what people are good at, nature vs. nurture, what jobs require what talents, etc., would have
been interesting. But none of that is here.

Hardy says that mathematics is a young man’s game and claims that no great discoveries in
mathematics have been made by anyone over 50. He gives as examples (1) Gauss, Newton, Painlevé
(who?), and Laplace, which are fair examples, and (2) Galois, Abel, Ramanujan, Riemann, who all
died before they were 50, so these are unfair examples. In my mind Hardy has made an interesting
conjecture rather than an established fact.

Since Hardy’s reasoning is speculative and not rigorous, I will do the same. The following people
made important contributions after 50: Michael Rabin, Les Valiant, Avi Wigderson, Roger Apéry

1©2024 William Gasarch
2I may be biased, since I’ve written over 100 book reviews, over 20 open problem columns, and write a blog, most

of which are about math.

8

(ζ(3) /∈ Q at the age of 62), Yitang Zhang (bounded gaps between primes at the age of 58), Louis
de Branges (proof of Bieberbach’s conjecture at age 51). André Weil and Jean-Pierre Serre did
high-level work past 60; in Serre’s case, past 80. Rabin, Valiant, and Wigderson continued to do
great work past 50. Valiant and Wigderson are still active.

This may be unfair to Hardy, since the people above were mostly not born before Hardy died. It
would be an interesting history project to see which mathematicians before Hardy produced great
work after 50. Archimedes may be an example, but our records from that time period are terrible.
Euler is a better candidate. Also, Weierstrass proved his approximation theorem at the age of 70.

I believe that people over 50 are capable of doing great mathematics; however, there are reasons
why it is rare:

1. (Andrew Gleason told me this one.) A mathematician works in one field for a long time and
the field dries up: all of the open problems left are too hard to solve at that time. Since
mathematics is an old field with much knowledge already built up, changing fields is hard.
So the mathematician is stuck. This is why computer science, a newer field, has not had this
problem as much.

2. The Peter Principle: Absola is such a great researcher, let’s make her department chair, so
she will have no time for research.

3. In Hardy’s time people often died before 50.

And now for the two main courses: (1) Why does Hardy think pure math is a worthy endeavor?
and (2) What does he think of applied math?

Pure math. Hardy says that while some math is useful (more on that later), that is not the real
reason why math is worth doing. He gives as examples of beautiful mathematics (a) the proof that√
2 is irrational, and (b) the proof that the primes are infinite.
He talks about why these theorems, and others, are beautiful and deeper than examples with

small numbers (e.g., the theorem that 5 is the sum of 2 squares) or chess. He talks about significance,
depth, and generality. He admits that these terms are hard to define. Okay, so in the end was all
of this interesting or convincing? Interesting? Yes, it’s good to see someone struggle, as we all do,
to defend our field. Convincing? No. I already believed that pure math is worth doing for similar
reasons that Hardy did, though he articulates them well. Even so, I doubt this would convince
someone who had not already drunk the Kool-Aid.

Applied math. I can do no better than to give a quote which reflects what Hardy says in several
parts of the book (I leave out some boring side comments):

It is undeniable that a fair working knowledge of the differential and integral calculus
has considerable practical utility. These parts of mathematics are, on the whole, rather
dull. They are just the parts that have the least aesthetic value. The ‘real’ mathematics
of the ‘real’ mathematicians, like Fermat and Euler and Gauss and Abel and Riemann,
is almost wholly useless (and this is as true of ‘applied’ math as of ‘pure’ math).

He claims that relativity and quantum mechanics use interesting math (I would say they also
motivated interesting math) but are not practical. He was right about that in his time, but wrong in
the long term. And of course he thought number theory was interesting math that was not practical.

9

He was wrong about that, as it is now used heavily in cryptography. It would be unfair to criticize
him for not seeing the future. However, he seems to not see the synergy that math has with other
fields, even in his own time. Physics was the inspiration for much interesting mathematics. Games
of chance were the inspiration for much of probability.

I view pure math, applied math, physics, and computer science as all interacting with each
other with fuzzy boundaries; each has its interesting and dull parts. As time goes on we may add
more fields to that list such as chemistry, biology, philosophy (I am thinking of logic, but there
could be other parts), and history (see https://blog.computationalcomplexity.org/2013/04/
a-nice-case-of-interdisciplinary.html for an example).

3 An Applied Mathematician’s Apology

Nick Trefethen wrote this book to discuss what applied math is and why it is a worthy endeavor.
The book mostly centers on numerical analysis. His main points are (1) pure math underrates
applied math, (2) numerical analysis is interesting, and (3) some work in numerical analysis is not
practical.

He makes point (1) by looking at the list of Fields Medal winners and noting that not only are
none of them in applied math3, but he has only read the work of one of them (Ahlfors). He also has
some anecdotes of pure mathematicians disparaging applied mathematicians. However, my sense
is that in recent years this has gotten better. Pure mathematicians are aware of, and respect, for
example, the P vs. NP problem. And one of the Millennium Prize problems is squarely in applied
math, dealing with the Navier-Stokes equations.

One odd point that may support his contention: Trefethen invented and guided the development
of a numerical analysis package Chebfun from start to finish. This package is widely used and very
practical. On his Wikipedia page there is no mention of Chebfun.

Regarding point (2), I suspect that for most of my readers the term numerical analysis evokes
the thought dealing with errors, ugh. This is a misconception. The author defines the term:

Numerical analysis is the study of algorithms for problems in continuous mathematics.

Trefethen then gives very good examples of interesting results in numerical analysis. I give one
here but also relate his story of how the study of it went off the rails.

Say you want to interpolate a function f by a polynomial p on the interval −1 ≤ x ≤ 1.
Which points should you use? Equally spaced points are terrible. The Chebyshev points, which
are clustered around −1 and 1, are excellent. This is interesting and was explained by Carl Runge
in 1904. So far, so good.

But are the Chebyshev points optimal? The answer is no. Okay, then what are the optimal
points? Bernstein made a conjecture about this in 1931 that was solved in 1981 by Kilgore and de
Boor. Great! So can we now do interpolation much better? No. The improvement is 0%. Hence
the work after Runge was academic and has no real-world impact. Yet even if it has no application,
is it worth knowing? I leave that as an open question.

3The following Fields Medal winners are candidates for exceptions: Wendelin Werner (2006, probability theory
and mathematical physics), Cédric Villani (2010, PDEs and mathematical physics), Martin Hairer (2014, stochastic
partial differential equations), Alessio Figalli (2018, calculus of variations and PDEs), Hugo Duminil-Copin (2020,
statistical physics). Note that the last one got his Fields Medal after the book was written.

10

https://blog.computationalcomplexity.org/2013/04/a-nice-case-of-interdisciplinary.html
https://blog.computationalcomplexity.org/2013/04/a-nice-case-of-interdisciplinary.html

The book gives other examples of interesting applied mathematics and sometimes, even when
work went astray, where that work led to. Also the book tells the author’s own story of how he got
into the field and how he thinks about research.

4 Opinion

Hardy’s book has some interesting points to make, even if you disagree with them; however, he
seems to go on and on at times before getting to his point, which is not worth it in the end. It’s dull
reading, almost as dull as he claims applied mathematics is. Should you read it? Oddly enough,
yes, to see how one could try to defend pure math. Should you buy it? I borrowed mine from a
colleague in the math department, and I recommend you do the same.

Trefethen’s book is interesting. His life story is fascinating, and the math he talks about made
me curious to learn more. He makes the point that numerical analysis (and to a lesser extent
applied math) is fundamentally interesting. You should buy and read his book.

11

Mini-review of 1

Algebra and Geometry with Python
by Sergei Kurgalin & Sergei Borzunov

Springer Nature Switzerland, 2021
425 pages, Hardcover, $99.99, Softcover, $64.99, eBook, $49.99

Review by Mikael Vejdemo-Johansson
(mvj@math.csi.cuny.edu)

Computer Science Program, CUNY Graduate Center,
Department of Mathematics, CUNY College of Staten Island

This is an introduction to elementary linear algebra and analytical geometry with some code
snippets and references to performing computations in Python - suitable for a first-year course for
STEM students. In the book, a reader will meet most of the topics expected in such a course:
matrices, vectors and matrix algebra; matrix reduction to solve systems of linear equations; equa-
tions of straight lines and planes; structure of euclidean vector spaces with particular focus on
R3. Towards the end, it goes into a selection of geometric applications of the principles developed
earlier in the book: complex numbers, quantum computing, bilinear and quadratic forms with their
vector-matrix representations w(x) = xTAx, generic quadratic curves, and finally even a foray into
elliptic curves and their group structure.

Each chapter starts with the text developing the material, with concrete examples and worked
calculations. This is followed by a good selection of review questions and then problems that range
from mechanic training on the specific skills of the chapter to proof-based and exploratory problems
that go into some depth in associated topics that were not covered in the text. They are followed
by solutions to most (but not quite all) of the given problems. While making the book better for
self-study through this choice, the solutions may decrease the usefulness of the book problems for
homework in less trusting academic settings. Index and reference list are solid; no clear or obvious
problems with either. The book also includes three appendices: very bare-bones intro to Python, a
trigonometry cheat sheet, and the Greek alphabet. The Python appendix gives me the impression
that the authors fully expect any reader to already be comfortable with programming.

The quantum computing excursion is more thorough than many short intros that I have seen
so far, and it may well set the reader up for reading more thorough introductory texts with more
success than without reading this chapter.

As an introduction to linear algebra it is not bad, but the Python connection is both out-
dated and sporadic at best. The authors give a few code snippets: exchanging values of variables,
I/O, matrix addition, scalar multiplication and transposition, matrix multiplication, determinants,
Hilbert matrices, Gaussian and Gauss-Jordan elimination, determining quadrant of a point, elliptic
curve addition. They are writing the linear algebra Python code without any reference to the
matrix multiplication operator (in Python since 2015) - much less any use of it - but since they also
barely ever use their own matrix multiplication method, there is not that much lost by skipping it.
The authors do say in the Preface that they are using “Python 3” without specifying a sub-version.
Most remarkable in how little impact Python has on the book is the entire Section 11.5 with a title
starting with “Algorithms” and containing not a single line of either code or algorithm pseudo-code.

1©2024 Mikael Vejdemo-Johansson

12

Mathematics in Computing:
An Accessible Guide to Historical, Foundational and

Application Contexts, 2nd ed.
by Gerard O’Regan

Springer Nature Switzerland, 2020
458 pages, Softcover

Mini-review by 1

David J. Littleboy (djl@alum.mit.edu)
Technical translator, retired

Tokyo, Japan

1 Overview

I think this book succeeds and would be useful
as a text for an introductory and/or overview
course for the mathematics used in computer
science.

The book consists of 28 (yes, 28!) short
chapters, each one of which consists of a short
introduction, an exposition of the topic at hand,
some review questions, and a summary. Each
chapter could be covered in one or two lectures
plus a TA-led session, and the professor could
pick and choose from the later chapters. The
questions are excellent, mostly conceptual, with
an occasional calculation problem to keep the
students on their toes.

The author deserves praise for his content
selection. The first three chapters are nec-
essary background/introductory material, and
then individual chapters cover individual top-
ics: algorithms, number theory, algebra, com-
binatorics, and a lot more. I was particularly
pleased that the author covers both number

1©2024 David J. Littleboy

Mini-review by 1

S. V. Nagaraj (svnagaraj@acm.org)
Vellore Institute of Technology

Chennai Campus, India

1 Summary

This book, authored by a prolific writer, is
about the applications of mathematics in
computing and places emphasis on historical
contexts where applicable. Aimed at under-
graduate students of computer science, the
book provides helpful pedagogical features:
key topics covered in each chapter are listed at
the beginning, followed by an introduction, a
summary, questions for review, and references
at the end. Its second edition includes 28
chapters and runs to 458 pages, a significant
expansion of the first edition, which has 16
chapters and runs to 288 pages. The chapter
on foundations of computing introduces binary
numbers, early computers such as the analyt-
ical engine, and symbolic logic. The chapter
on algebra looks very briefly at structures such
as monoids, groups, rings, fields and vector
spaces. The chapter on coding theory focuses
on block codes. The chapter on advanced
topics in logic contains a brief description of

1©2024 S. V. Nagaraj

13

theory and abstract algebra, not just as inciden-
tal material relevant to computer science, but
as independent intellectual areas. I also liked
the author’s example of a proof using strong
induction. I’ve seen too many books that fail
to explain where strong induction is needed and
used.

While I did notice some editing issues and
typos, I like both the overall design of the book
and the content covered. The writing style is
on the dense, punchy, and declarative side, but
not excessively so. Lastly, the book makes a
point of introducing and crediting the figures
who made the major contributions to the ar-
eas discussed, that is, it keeps its eye on the
historical and foundational aspects it aims to.

2 A Historical Aside

While I strongly believe that the brevity of the
chapters in this book is a feature, it doesn’t
allow space for deep historical analysis. In the
introductory historical material, the author em-
phasizes the uninspired performance of early
digital computers. How slow were they, actu-
ally?

While electro-mechanical computers could
perform roughly one operation per second, the
early tube computers could perform around
1,000 operations per second. That’s three or-
der of magnitude. Not too shabby.

The next gain of three orders of magnitude
took another 30 years for mainframes and an-
other 10 years after that for personal machines.
And it took another 20 years for the next three
orders of magnitude speed improvement (see
the plot below); many commentators see those
20 years as a period of unequaled technological
progress.

fuzzy logic, temporal logic, intuitionistic logic
and undefined values. The chapter on overview
of formal methods discusses topics such as
the need for formal methods, approaches, the
Z specification language, the B method, and
model checking. The chapter on automata
theory is very brief, running to just ten pages;
finite state machines, pushdown automata and
Turing machines are considered. The epilogue
essentially summarizes the concepts discussed
in the chapters. The list of figures, glossary,
and the index are helpful. The bibliography
surprisingly has just one reference by the same
author.

2 Opinion

It was not easy to find out what changes were
made in the second edition of the book. The
companion website gives some information, al-
though inadequate: “This fully updated new
edition has been expanded with a more com-
prehensive treatment of algorithms, logic, au-
tomata theory, model checking, software relia-
bility and dependability, algebra, sequences and
series, and mathematical induction.”

Since 458 pages span the 28 chapters, read-
ers will find that some of the chapters are very
abbreviated. However, given the fact that en-
tire books have been devoted to the topics cov-
ered in each of the chapters, and that the book
is aimed at undergraduate students in computer
science, the shortcoming may be excused. The
book achieves its objective of providing a flavor
of the mathematics used in computing, so the
general reader will likely benefit from it as well.

14

	Notable new releases
	This column
	How to contribute
	Overview
	Summary of Contents
	Opinion
	Introduction
	A Mathematician's Apology
	An Applied Mathematician's Apology
	Opinion
	Overview
	Summary
	A Historical Aside
	Opinion

